
SXSim – A Simulator for the SX Family of Microcontrollers for
Microsoft Windows

Version 1.2

Copyright ©, 2004

by Guenther Daubach
Im Eulenflug 25

D-51399 Burscheid, Germany
Tel./Fax: +49 2174 – 785 931

What is SXSim?

SXSim is a software-emulation of the SX family of microcontrollers for PCs running the Win-
dows operating system (Win 98 and higher).

SXSim has a built-in “virtual” SX controller that is able to execute the commands contained in
a list file (LST) created by the current version of SASM which is integral part of the SX-Key
software. Please note that SXSim may not work correctly with LST files that were created by
other versions, or types of SX assemblers because SXSim makes certain assumptions on
the structure of the LST files, unique to the SX-Key SASM.

SXSim is – by no means – yet finished, or fully tested. It is in Alpha state, so don’t be sur-
prised if certain SX features are not correctly supported, or are not supported at all. Never-
theless, this version of SXSim should give you an idea of what can be done. The current ver-
sion of SXSim does only support the “small” SX devices, i.e. SX 18/20/28, but not the SX
48/52 devices.

Why SXSim?

On the SXTech List forum, I once found a message that read: “The best SX simulator is the
SX itself together with SX-Key”. I fully agree to that statement because one of the unique
features of the SX is that it can be debugged “on-line”. But there are always some matters
that could be improved:

 Whenever you make a change in the SX program, the SX program memory must be
re-programmed for the next debugging session – with SXSim, you simply re-load the
list file after re-assembling the source code file, and you are ready for a new simula-
tion session immediately.

 Due to the internal structure of the SX, you can only define one breakpoint at a time

with SX-Key and any other SX development system. SXSim allows you to define as
many breakpoints as you like, and it automatically saves the breakpoint positions, so
that they are there again when you re-load a LST file later.

 Due to the internal structure of the SX, you can not set a breakpoint on a NOP

instruction – SXSim makes that possible.

 Due to the internal structure of the SX, the “breakpointed” instruction is always exe-
cuted before the program stops. This means that breakpoints on JMP or CALL in-
structions actually halt the program execution on the first instruction of the JMP tar-
get, or the first instruction of the subroutine. SXSim – on the other hand – stops pro-
gram execution before the “breakpointed” instruction is executed.

 SXSim displays some additional, useful information, like the status of the port direc-
tion registers, the stack memory, and the number of executed cycles, or the elapsed
execution time at the specified clock frequency. It also analyzes the clock cycles of
the ISR code.

 SXSim performs checks for stack underflow and overflow conditions. This helps you

to find out if your code contains RET instructions without prior CALL instructions, or if
your subroutines are nested too deeply. It also displays a “Stack gauge”, which gives
you an idea of how deep you have nested subroutine calls in a program.

 SXSim comes with a “Walk” mode, i.e. a “slow motion” mode where you may select

the motion speed. You can also select if active breakpoints shall stop the “Walk”
mode, or not.

 SXSim also comes with a “smart” I/O panel that configures itself, depending on how

the TRIS port register bits are set by the simulated program. When a port pin is con-
figured as input, the panel activates a “virtual input button”, when a pin is configured
as output, the panel activates a “virtual LED”. Input buttons can be locked if neces-
sary in order to set more than one input pin to high level at the same time.

The I/O Panel also has a special “virtual input button” that becomes active when the
SX is configured have the RTCC incremented by external pulses.

As you can see, SXSim comes with some features that are not available with “real-live” de-
buggers. Nevertheless, SXSim’s target is not to replace such “real-live” debuggers, like the
SX-Key – it has been designed as a utility for those users who like to “test before buy” a
“real” SX development system, and for SX developers who want to “test before flash” an ap-
plication.

The SXSim User Interface

The user interface of SXSim has been designed very similar to the popular SX-Key IDE, Ver-
sion 2.x, distributed by Parallax Inc.

Many controls of the SXSim user-interface come with integrated tool tip help messages, so
just move the mouse cursor on an item for more information.

Here is how the SXSim user-interface looks like after you have launched SXSim:

If you are familiar with the SX-Key IDE, you will find many similarities between SXSim and
SX-Key, but there are some differences, and a couple of new items in the SXSim IDE.

First, you may notice that SXSim does not have a menu bar, like SX-Key. Instead, all SXSim
operations can be executed by clicking the buttons, or other items that are shown in the main
window.

The “Commands” section to the right acts as SXSim’s “Control Center”, similar to the one in
SX-Key, but it has some additional command buttons. For now, there are only two buttons
active in this area: “Load File”, and “Quit”.

Before performing any meaningful operation with SXSim, it is necessary to load a list file that
SASM has created while assembling the program, you want to simulate. In other words, any
program to be simulated must first pass SASM, i.e. it must be assembled without any errors
(and warnings – if possible).

Click the “Load” button to open a file select dialog, where you can navigate through your
computer’s folders, and select the LST (list file) of the program you want to simulate.

After you have selected a list file, the SXSim display will look similar to the next figure:

As in SX-Key, the upper half of the window shows the “SX internals”, where the lower half
displays a view into the application’s list file that is currently open. In SXSim, this file is not
shown in a separate window that may be moved, re-sized, or closed, but in the lower fixed
area of the main window, instead.

In the upper half of the window display, the register contents of Bank 0 in hexadecimal, and
binary representation are displayed, like SX-Key does. Note that the upper three bits of
FSR’s binary representation are highlighted because of their special meaning as bank-select
bits.

Similar to SX-Key, the contents of the M (MODE) and W registers are shown at the top cen-
ter of the window, together with the fields “INT” and “SKIP” that will become highlighted when
an interrupt is handled, or a skip will be executed.

The center area that is used in SX-Key to display the current instruction code does not exist
in SXSim. Instead, the “Next Instruction” field has been introduced which shows the mne-
monic of the next instruction to be executed, together with any symbolic name of an operand
or a label (when defined). The remaining space of this area is used to display other important
information, like the setting of the port direction registers (TRIS) in binary representation, the
setting of the special port B configuration registers (WKEN_B, WKED_B, and WKPND_B),
the “Next Instruction”, and the CALL-Stack display.

The buttons and displays in the lower area of the center part of the window deal with the SX
system clock.

We will address these sections in more details later in this text.

The area to the right of the main window contains the display array of the SX memory banks
above bank 0, similar to the SK-Key IDE.

After you have loaded a list file, part of the file contents is displayed in the lower window
area, the so-called “list file area”.

Again, this area is similar to SX-Key’s list window with the exception that here, each line has
a small check-box to the left. Click on any check-box of a line containing executable code in
order to set a breakpoint there (when you click a check-box in a line that does not contain
executable code, nothing will happen at all). Check-boxes of lines that are “breakpointed”
have a small check marker. In order to remove a breakpoint, simply click on a checked box
again to remove the breakpoint.

Whenever you load another list file, or quit SXSim, the active breakpoints, and some other
information will be saved to a file with the list file’s name, and the “.SIM” extension. When
you re-load the list file later, all breakpoints, and other settings will be restored again.

Above the list file section, there are some buttons that are unique to SXSim. These buttons
are used to quickly navigate through the list file.

CLR BPs

Click this button to clear all breakpoints that have been set before.

Prev BP

Click this button to position the current list cursor on the previous line that contains a break-
point (if any).

Next BP

Click this button to position the current list cursor on the next line that contains a breakpoint
(if any).

Find Main

Positions the current list cursor to the line that contains the label “Main”. This label is com-
monly used to mark the program’s main entry point, i.e. the RESET directive would read
“RESET Main”. Although you are free to assign any other name to the main entry point, it
makes sense to use “Main” in order to use that SXSim feature (the SX-Key IDE has a similar
function – which is another good reason to use that name).

Find ISR

Positions the current list cursor to address 0 which is the entry point of the SX interrupt ser-
vice routine (if one has been defined).

Find PC

Positions the current list cursor to the location in program memory, currently addressed by
the PC register.

Find Label

Click this button to open a dialog box where you can enter the name of a symbolic label. You
may enter names of global or local labels (with a leading colon). When the entered label ex-
ists, the current list cursor will be positioned on the line containing that label. This function is
not case-sensitive, i.e. it does not matter if you enter label names in upper-, lower, or mixed
case.

When you activate the Find Label function again, previously searched labels are stored in-
ternally, i.e. you may select any of them from the drop-down list.

Find Text

This function is similar to “Find Label”, but it allows you to search for any text in the list file
(except in comments which are ignored). Again, the search is not case-sensitive, and previ-
ous search patterns are internally stored so that you can select them again from the drop-
down list. Please note that this function always starts searching the text pattern from the cur-
rent list cursor position towards the end of the list file, and then continues the search from the
first line of the list file.

Press F3 to continue the search for the most recently entered search pattern without the
need to click the “Find Text” button once again.

The “Commands” Section

This section contains the controls that are used to control SXSim. Some of them are “well-
known” to users of SX-Key, but some are unique to SXSim.

Step

Click this button to execute the instruction that is currently highlighted by the list cursor in the
list file section of the SXSim window. Any changes of SX registers will be displayed, and re-
cently changed registers are highlighted with a read background.

Walk

Click this button to repeatedly execute instructions starting at the instruction that is currently
highlighted by the list cursor in the list file section of the SXSim window in “slow motion”. As
in the “Step” mode, any changes of SX registers will be displayed, and recently changed
registers are highlighted with a read background.

Click the “Stop” button to cancel the “Walk” mode. Clicking the “Reset” button instead, also
cancels the “Walk” mode, but also performs a simulated SX reset.

The “Walk” speed can be adjusted by the controls that are described next.

-

Left-click this button to decrease the delay between execution steps while the “Walk” mode is
active. (The current delay value in ms will be displayed in the field right of this button – left-
click into that field to restore the default value of 100 ms).

+

Left-click this button to increase the delay between execution steps while the “Walk” mode is
active. (The current delay value in ms will be displayed in the field left of this button – left-
click into that field to restore the default value of 100 ms).

Break Walk

When this box is checked, the Walk mode will be terminated on code lines that are marked
with a breakpoint.

Run

This starts SXSim’s run mode, which is a “hyper Walk mode”, i.e. the instructions will be exe-
cuted as fast as possible without refreshing the register display after each instruction, but in
intervals of one second only.

Click the “Stop” button to cancel the “Run” mode. Clicking the “Reset” button instead, also
cancels the “Run” mode, but also performs a simulated SX reset.

Poll

While the “Run” mode is active, the register display will only be updated every second. Click
the “Poll” button at any time to refresh the register display in between.

Stop

Click this button to terminate the “Walk” and “Run” modes at any time.

Reset

Click this button to perform a reset of the simulated SX. This will also terminate active “Walk”
and “Run” modes. After a reset, various SX registers will be initialized to their defaults.

Please note that a reset in SXSim also clears registers that are not automatically cleared in a
“real” SX, like the file registers in the various banks.

I/O Panel

Click this button to display the I/O Panel window. We will address the I/O panel in more detail
in another chapter below.

Load File

Click this button to open and load a list file after launching SXSim, or when you want to load
another list file while SXSim is active. Whenever you open another list file, or when you ter-
minate SXSim, some settings of SXSim (like the active breakpoints) are saved in the direc-
tory where the list file exists, using the list file name together with the “.SIM” extension.

When you load a new list file, SXSim automatically checks if a matching “.SIM” file exists,
and restores the most recent SXSim settings in that case. SXSim also keeps track if the list
file has been changed since the last version of the “.SIM” file has been saved. This may be
the case when you have re-assembled the related SX program in the meantime. As you may
have added, removed, or re-located instructions, the breakpoints that were eventually saved
at the end of the last SXSim session might no longer be correct. Therefore, when break-

points were defined, SXSim displays a dialog box in this case, allowing you to either restore
the breakpoints, or to ignore them.

While SXSim is running, it periodically checks if the currently loaded list file has been modi-
fied by another application in the meantime (e.g. by SX-Key). When this is the case, a dialog
will be shown, and you have the choice to update the list file, or to go ahead with the cur-
rently loaded version.

Quit

The function of this button is obvious – it terminates SXSim after saving the current simula-
tion settings, as described before. Instead of clicking the “Quit” button, you may also click the
close-box at the top-left of the SXSim window.

The Clock Section

This section contains some information about the SX clock. When SXSim finds a FREQ di-
rective in the list file, the clock frequency specified together with this directive is displayed in
the “Clock/MHz” field, else the text “unknown” is shown.

The field to the right of the “Clock/MHz” field either displays the total number of clock cycles
that have elapsed for program execution so far. When SXSim “knows” the clock frequency,
you may toggle the field display between the total number of elapsed clock cycles, or the
total elapsed time in µs by clicking the button above the field, initially named “Cycles”. The
contents of this field will be cleared when you click the “Reset” button, or load another list file.
You may also clear it in between by clicking the “CLR” button to the right of this field.

The ISR Cycles field shows the maximum number of clock cycles taken so far to execute the
ISR code, provided that there is ISR code at all, and that this code was executed at least
once. For ISRs with variable execution times, the field always displays the largest number of
clock cycles that have been taken so far. This information may help you to check if the ISR
code is too large to be executed within one interrupt period when you are using RTCC timed
interrupts.

Click the “CLR” button to the right of this field to clear the displayed value.

The Stack Section

The eight fields under the “Stack” title are used to display the current contents of the call
stack. When a CALL instruction is executed, you will notice that the return address is dis-
played in the field at the bottom. In case the called subroutine calls another subroutine, you
will see how the already stored return address is advanced on position up, and that now the
second return address is displayed in the bottom field. The eight-level stack of the SX allows
for a nesting depth of eight. In a “real” SX, the first return address gets lost when this value is
exceeded. SXSim keeps track of the nesting level, and reports an error in case the nesting
level is exceeded.

When a RET, or RETW instruction is executed, you will notice how the lowest address is
“popped” off the stack, and that higher return addresses (if any) drop down one position.

Executing a RET, or RETW instruction without a prior CALL on a “real” SX leads to unpre-
dictable results leading the program flow into “Nirvana”. SXSim checks for such situations,
and reports a Stack Underflow error.

As return addresses are pushed on the stack, you will notice that all fields that had contained
a return address will be highlighted. When the addresses are “popped” from the stack again,

these highlights will remain active, acting as a “gauge” indicating the maximum “stack fill
level”. This is handy to check the maximum subroutine nesting in a program. The “gauge” is
cleared when you click the “Reset” button, or load another list file.

NOTE: When the list file does not contain a STACKX, or OPTIONX directive, the stack is
limited to two locations only, and only the lower two fields of the stack will be visible, and
stack nesting depth is limited to two.

The I/O Panel

Click the “I/O Panel” button to display the I/O Panel window:

The I/O panel contains four major sections, named “Outputs”, “Inputs”, “RTCC Input”, and
“Commands”.

The “Outputs” section contains the “virtual LEDs” that are connected to the SX port pins con-
figured as outputs. At start-up, there will be no LEDs active because by default, the SX sets
all pins to input.

Later, when you simulate a program, “LEDs” will become visible for all port pins that are out-
puts, and the “LEDs” will be “turned on” when the output pin is set to high level by the simu-
lated program.

The “Inputs” section contains pushbuttons/switches that may are “connected” to the input
port pins of the simulated SX. At start-up, there will be pushbuttons available for all port pins
because the SX sets all pins as inputs then. When any of the port pins is set to an output by
the simulated program, the associated pushbutton will become invisible, and an “LED” will be
shown in the “Outputs” section instead.

When an input button is visible, you may either left-click it in order to “push” the button (the
assigned port pin will assume high level in this case), or right-click the button to toggle its
state. Whenever a button is “pressed”, i.e. left-clicked, or “toggled on”, it will be displayed in
green.

The “RTCC Input” section remains empty until the application defines that the RTCC input
pin shall be used to clock the internal RTCC counter. In this case, a “virtual pushbutton” will
be displayed in this section”. Note that this pushbutton can only be “pushed”, i.e. clicked with
the left mouse button – it can’t be locked as the other input buttons.

The “Commands” section of the I/O Panel contains most of the buttons that are available in
the “Commands” section of the main display. The can be alternatively used to single-step,
walk, run, or stop a simulation.

Click the “Hide” button to hide the I/O panel. In order to display the I/O panel again, click the
“I/O Panel” button in the main display again.

When terminating SXSim, or when you select another LST file by clicking the “Load File”
button, the current I/O Panel port bit assignments, together with some other project-specific
settings, like breakpoints are saved in a file with the LST file name and a “.SIM” extension.
When you re-load the same LST the next time, breakpoints, and port-assignments for the I/O
Panel will be restored automatically,

A Sample SXSim Session Featuring the I/O Panel

Launch SXSim, and click the “Load File” button.

In the file select dialog that opens next, navigate to the TestPortInt.lst file that came with
SXSim, and open it.

Here is the source code that was used to generate TestPortInt.lst:

LIST Q = 37
DEVICE SX28L, TURBO, STACKX, OSCHS2
IRC_CAL IRC_FAST
FREQ 50_000_000
RESET Main

 org $000
ISR
 mode $09 ; Select WKPND_B
 clr w
 mov !rb, w ; Exchange WKPND_B and w
 test w ; Any WKPND_B bits set?
 snz
 jmp :RTCCInt ; No, must be an RTCC interrupt
 xor ra, w ; Toggle ra.1 or ra.0 depending on

; which WKPND_B it (1 or 0) is set
 reti

:RTCCInt
 xor ra, #%00000100 ; Toggle RA.2
 mov RTCC, #250
 reti

Main
 mode $0b ; Select WKEN_B
 mov !rb, #%11111100 ; Enable interrupts on RB.1 and RB.0
 mode $0a ; Select WKED_B
 mov !rb, #%11111101 ; Positive edge on RB.1, negative on

; RB.0
 mode $0f ; Select TRIS
 mov !ra, #%11111000 ; RA.2 ... RA.0 are outputs
 mov RTCC, #250
 mov !option, #%10101000 ; Enable RTCC interrupts, external

; RTCC clock, positive edges, no
; prescaler.

 jmp $

The Main code enables interrupts/wakeups on positive edges on port B.1 and negative
edges on port B.0, and configures port A bits 2 through 0 as outputs.

After initializing the RTCC to 250, it enables RTCC interrupts, and sets the RTCC to be in-
cremented by positive signal edges applied to the external RTCC input with no prescaler.

Finally, an endless loop is entered.

In the Interrupt Service Routine (ISR), the contents of the WKPND_B register and w are ex-
changed. As w is cleared before, WKPND_B is cleared afterwards (which is important to
avoid more interrupts before another bit in WKPND_B is set again).

When no bits in WKPND_B are set, execution is continued at :RTCCInt, else the contents of
WKPND_B is used to toggle the output pins RA1 and RA0. We will discuss the code follow-
ing :RTCCInt later).

After TestPortInt.LST has been loaded, click the “I/O Panel” button to display the I/O Panel. It
will display the default I/O port configuration, i.e. input buttons for all port pins and no output
“LEDs”.

If possible, position the SXSim main window and the I/O panel on the Windows desktop so
that both windows don’t overlap each other.

First, single-step through the instructions of the Main program section, and note how the
three “LEDs” assigned to RA2, RA1, and RA0 become visible, and how the input buttons are
hidden after the instructions for MOV !RA, #%11111000 have been executed.

Pins RA2...0 have been configured as an outputs now, so you may no longer force this pin to
high or low level with a pushbutton “connected” to it. The I/O panel should now look like this:

As you step over the instructions to set the OPTION register, a button will become visible in
the RTCC Input section (we will discuss this in more detail later).

Next, “Walk” the program, and click and hold the RB.1 input button. In the SXSim main win-
dow, you will see how the program flow enters the ISR, and how the “LED” assigned to RA.1
is turned on. Note that the ISR code is entered as soon as you “push” the button because
RB.1 is configured to trigger interrupts on positive edges. Release and push the button again
for several times, and note how the RA.1 “LED” is toggled.

Next, click and hold the RB.0 input button for a while. You will notice that the ISR code will
not be executed before you finally release this button because RB.0 was configured to trigger
interrupts on negative edges. Click and release this button a couple of times, and watch how
the RA.0 “LED” is toggled.

The RTCC Input section

When bit 6 in the OPTION register is cleared, i.e. RTCC interrupts are enabled, and bit 5 in
the OPTION register is set, i.e. when external RTCC clock signals are enabled, the button in
the RTCC Input section becomes visible:

After you have tested the port B interrupts as described above, continue “Walking” the pro-
gram.

Please notice that the field “ISR Cycles” should display 13 after you have clicked one of the
two buttons assigned to RB1 and RB0 at least once, indicating that the ISR execution has
taken 13 clock cycles (this includes the cycles required to enter the ISR, and to execute the
final RETI instruction.

Now click the button in the RTCC Input section several times. Note how the RTCC register
increments each time you click that button. When RTCC overflows from FF to 00, the ISR
code will be executed, but this time, it branches to :RTCCInt, where it toggles bit RA.2, and
the “LED” “connected” to that output confirms this.

Now, check the contents of the “ISR Cycles” field again. It should display 18, i.e. the code to
handle the RTCC interrupt took longer than the code to handle the port B interrupts. The
“ISR Cycles” field always displays the maximum number of ISR cycles required for an ISR
execution so far.

The END

This ends the SXSim documentation for now. Please stay tuned, more features will be com-
ing soon…

If you have any comments, suggestions, wishes, or found a bug, please feel free to contact
me at any time.

Guenther Daubach
g.daubach@mda-burscheid.de

