
PO Box 160
Sierra Vista, AZ 85636-0160 USA
ph: 520-459-4802 • fax: 520-459-0623
e-mail: 72037.2612@compuserve.com

Building and Using the

Copyright © 1995 by Scott Edwards

Assembling the Mini SSC

P
IC

16C
61

QTC
HIIL1

U1—QTC H11L1 Optoisolator (dot at upper left)
U2—LP2950 voltage regulator (flat side as shown)
U3—MN1381 or TC44VC4303 reset circuit (flat side as shown)
U4—PIC16C61 microcontroller (in 18-pin socket; notch at top)
R1—1.8k (brown-gray-red) 1/8W resistor
R2—10k (brown-black-orange) 1/8W resistor
R3–R11—220Ω (red-red-brown) 1/8W resistor
R12, R13—100k (brown-black-yellow) 1/8W resistor
C1,C3—0.1µF monolithic or ceramic capacitor
C2—1µF tantalum capacitor (longer + lead in hole marked +)
D1—1N4148 diode (striped end upward, body on left)
CR1—3-terminal 8MHz ceramic resonator (marked 8.000)
Header stakes—mount the 2x2, 2x8, and 1x3 header strips as shown
9V clip—socket connects to 1x3 header; red to +IN and black to GND
Shunts—shorting jumpers provided for baud rate (B) and address/ID (I);
see “Using the Mini SSC” for configuration information.

Using the Mini SSC (Serial Servo Controller)

The Mini SSC is a module that controls eight servos according to instructions received
over a 2400- or 9600-baud serial connection. The Mini SSC is serially addressable,
so up to 32 units can share one serial line to control 256 servos.

Although the examples below concentrate on the BASIC Stamp, the Mini SSC may
be directly connected to any RS-232 data source at 2400 or 9600 baud (no parity, 8
data bits, 1 stop bit). PC-specific hookup instructions appear later in this booklet, but
PC users should at least skim the Stamp writeup below in order to get familiar with
the Mini SSC.

Configuring the Mini SSC

The default configuration of the Mini SSC is 2400-baud communication and a serial
address (ID) of 0 (zero). The configuration header is at the upper-right corner of the
Mini SSC circuit board. Installing a jumper on the posts marked B sets the unit for
9600-baud communication; a jumper at I changes the ID to 1 (one). The ID number
sets the range of servo addresses according to the formula (ID x 8) + servo. For
instance, if the ID is 1 (jumper installed), and you want to address the servo connected
to output 3, you would send 11 [(1x8) + 3] as the servo number. If your system expands
beyond two Mini SSCs, you may order additional units with different IDs.

Connecting the Mini SSC

The BASIC Stamp or other serial device connects to the posts
marked S(in) 1 and 2 located on the left edge of the circuit board
as shown at right. This connection assumes that the Stamp is
set for “inverted” serial data as described in the programming
section below, and will also work with other inverted data sources,
such as a PC serial port.

The diagram below shows how to connect servos to the Mini SSC. Most servos require
4.8 to 6 Vdc from a source capable of delivering peak currents of several amperes per
servo. Four-packs of Nicad or alkaline C or D cells are perfect. The Mini SSC can be
powered by its own 9V battery, the Stamp’s battery, or any supply that can consistently
deliver 6 to 15 volts DC. If you use the Stamp’s battery, make sure to connect ground
to both the power ground (marked gnd) and pin 1 of the S(in) header.

S(in)
1

2

Ground

Serial
output pin

SERVO

RED

BLACK

YELLOW
(or other)

4-cell C or D
battery holder

+

–

RED

BLACK

Note that it’s best not to use the same power supply for the servos and Mini SSC.
Under load, the servos may draw down the supply voltage. This would cause the Mini
SSC to reset, losing servo position data.

Servos come with several different connector styles. The simplest way to make them
compatible with the Mini SSC is to remove the existing connector and replace it with
header sockets that fit the Mini SSC’s 0.025" square posts. See the Hints section for
more information.

Programming the Mini SSC

To command a servo to a new position requires sending three bytes at the appropriate
serial rate (2400 or 9600 baud, N81). These bytes consist of:

Note that these must be sent as individual byte values, not as text representations
of numbers as you might type at a terminal. Sending numbers as byte values in
PBASIC simply requires that you omit any text-formatting functions (# for the BS1;
dec, hex, ?, etc. for the BS2). In other BASICs, use the chr$ function to convert numbers
to bytes; see the PC-specific section. Here’s a line of BS1 PBASIC that sends servo 4
to position 50:

 Serout 0,N2400,(255,4,50) ' Servo 4 to position 50.

The line above assumes that Stamp pin 0 is connected to S(in) 2 as shown on the
previous page. Note that the Mini SSC’s serial protocol requires the byte 255 to be
sent as a marker indicating the start of a servo instruction. Next comes the servo
number, followed by the position value (0 through 254).

The servo number and position value may, of course, be determined by variables:

 Serout 0,N2400,(255,b2,b3)

That line will send the servo whose number is stored in the byte variable b2 to the
position stored in byte variable b3. Using variables, you can use the Stamp’s math,
logic, table, and looping operators to determine which servos to send to what positions.
For example, here’s a pair of For/Next loops that cycle all eight servos back and forth:

Again:
 for b3 = 0 to 254 ' Positions 0 to 254.
 for b2 = 0 to 7 ' All 8 servos.
 Serout 0,N2400,(255,b2,b3) ' Send servo b2 to position b3.
 next b2
 next b3
Goto Again ' Endless loop.

If you run this example, try changing the first for statement by adding different step
values, like so:

 for b3 = 0 to 254 step 10 ' Positions 0 to 254.

The servos will move through the position range much more rapidly than before, in
choppy steps. Keep this in mind as you write your own programs for the Mini SSC—
you can trade off smoothness and speed to achieve the exact results you need.

byte 1: 255 byte 2: servo (0-254) byte 3: position (0-254)

Hints on using the Mini SSC

• You can conveniently connect servos and other devices to the Mini SSC’s header
posts (and the posts on the Stamp and lots of other electronic devices)
using crimp-on sockets, as shown at right. The sockets are available
from Jameco (phone: 1-800-831-4242 or 1-415-592-8097; fax: 1-415-
592-2503) as part number 100765. A tool, part number 99442, makes
the crimping job easy. Jameco also carries plastic housings that align
the sockets at standard 0.1" intervals, such as part number 100811.
An excellent alternative is to cover the individual header sockets with
pieces of heat-shrink tubing.

• Futaba J connectors used on many servos already have sockets installed, but they
must be removed from their plastic housing. To do this, just pry up the fingers on the
side of the housing and slide the sockets out.

• When it is first powered up, the Mini SSC positions all servos to the center of their
travel, the equivalent of sending each servo a position value of 127. If the starting
positions of the servos are critical in your application, make sure that your program
initializes all servos to their correct starting positions as soon as possible after startup.
In some cases the starting positions of the servos are really critical (e.g., to prevent
damage to a mechanism). In such cases, you should configure the mechanical linkages
so that 127 is a safe starting position. If that’s not possible, you may want to use a
switch or relay to control power to the servos. Turn on servo power after your program
initializes the Mini SSC to appropriate starting positions.

• The Mini SSC reads the baud-rate (B) and ID (I) configuration headers only when
it is first powered up. If you change the jumper settings while the Mini SSC is on,
the changes won’t take effect until the power is turned off and back on.

• Up to nine Mini SSCs may be connected in parallel to a single Stamp pin. If your
application requires driving more controllers, either use a separate Stamp I/O pin for
each group of nine controllers, or add a buffer capable of driving at least 2 mA per
connected Mini SSC.

• With multiple Mini SSCs, IDs can be set so that the servo numbers are sequential.
For example, the servos of a Mini SSC with ID 0 are numbered 0 through 7; the servos
of ID 1 are numbered 8 through 15. Mini SSC PICs with base IDs of 2 through 30
may be obtained from the manufacturer (address on cover) or by special order through
the dealer from whom you purchased this unit.

• The Mini SSC printed circuit board features a top-layer ground plane and plated-
through hole construction. As a result, the mounting holes at the four corners of the
board are grounded. Any wiring that should not short to ground shouldn’t contact
metal screws used in these mounting holes either.

• Terminal software generally cannot send instructions to the Mini SSC. The reason
is that terminals send numeric values as strings of text. For example, when you type
“255” on the screen, it is sent as three bytes; the ASCII character codes for the symbols
“2”, “5”, and “5”. The Mini SSC expects a single byte with all its bits set to 1; a byte
value of 255. Some terminal programs can send these values, but only through a
combination of keys or a special menu.

C
2

1µ
F

+
5

U
2

LP
29

50
B

Z

6
to

 1
5V

 in
+

C
1

0.
1

S
er

vo
O

ut
pu

ts

+

C
on

fig
ur

at
io

n
Ju

m
pe

rs

T
he

 b
as

e
ID

 is
 n

or
m

al
ly

 0
.

O
th

er
 b

as
e

ID
s

w
ou

ld
 b

e
m

ar
ke

d
on

 U
4.

C
R

1

(O
n

th
e

ou
tp

ut
 h

ea
de

r,
ch

an
ne

ls
 a

re
 a

rr
an

ge
d

in
or

de
r,

0—
7,

 le
ft

to
 r

ig
ht

)

8
M

H
z

1 2 3 4 5 6 7 8 9

18 17 16 15 14 13 12 11 10

+
5

+
5

C
3

0.
1µ

F

U
4

R
4–

R
11

22
0

S
er

ia
l i

n
2

S
er

vo
 O

ut
pu

t
C

ha
nn

el
:

3
0

2
1

5
6

7
4

S
er

ia
l i

n
1

+
5

4

56
1 2

+
5

R
12

, R
13

10
0k

ID bp
s

S
ee

 T
ab

le
B

el
ow

Ju
m

pe
r

In
st

al
le

d
Ju

m
pe

r
R

em
ov

ed

ID
ID

 =
 b

as
e

ID
 =

 b
as

e+
1

bp
s

24
00

 b
ps

96
00

 b
ps

R
1

1.
8k

D
1

1N
41

48

U
1

H
11

L1
 o

pt
o-

is
ol

at
or

N
C

U
3

M
N

13
81

R
es

et

R
3

22
0

R
2

10
k

(M
ay

 s
ub

st
itu

te
:

T
C

44
V

C
43

03
)

(M
ay

 s
ub

st
itu

te
:

T
K

11
65

0)

R
A

2

R
A

3

V
ss

R
B

0

R
B

1

R
B

2

R
B

3

R
T

C
C

M
C

LR

R
A

1

R
A

0

O
S

C
1

O
S

C
2

V
dd

R
B

7

R
B

6

R
B

5

R
B

4

P
IC

16
C

61

Listing 1b. BASIC Stamp II (BS2) Demonstration Program

' Program: LEGS.BS2
' This program demonstrates servo control using the mini SSC.
' It commands six servos through a simplified, insectile walking
' sequence. The servo identifiers and positions are stored in a
' pair of tables in the routine servo_value.

steps var byte ' Current place in step sequence.
oddStep var steps.lowbit ' Least-significant bit of step no.
servo var byte ' Servo being addressed.
position var byte ' Servo position value.
temp var byte ' Temporary variable used in table lookup.
delay var word ' Delay between leg movements; controls speed.
n96n con $4054 ' Baudmode for 9600 bps.
n24n con $418d ' Baudmode for 2400 bps.
delay = 1000 ' 1 second between steps.

again:
 for steps = 0 to 13
 gosub servo_value ' Get servo no. and position value.
 serout 0,n24n,[255,servo,position] ' Send to SSC at 2400 baud.
 if oddStep = 0 then skip_delay ' Delay every second xmission.
 pause delay
skip_delay:
 next
goto again ' Endless loop.

' Look up the servo number and position value. Since the same data is
' sent to two different servos, the position table is half the length
' of the servo table. Looking up the correct position entry requires
' dividing the step number by 2.
Servo_value:
 lookup steps,[1,4,0,2,1,4,0,2,3,5,1,4,3,5],servo
 temp = steps/2
 lookup temp,[80,200,170,50,50,80,200],position
return

Listing 1a. BASIC Stamp I (BS1) Demonstration Program

' Program: LEGS.BAS
' This program demonstrates servo control using the Mini SSC.
' It commands six servos through a simplified, insectile walking
' sequence. The servo identifiers and positions are stored in a
' pair of tables in the routine Servo_value.

SYMBOL steps = b0 ' Current place in step sequence.
SYMBOL servo = b3 ' Servo being addressed.
SYMBOL position = b4 ' Servo position value.
SYMBOL temp = b5 ' Temporary variable used in table lookup.
SYMBOL delay = w5 ' Delay between leg movements; controls speed.

let delay = 1000 ' 1 second between steps.

again:
 for steps = 0 to 13
 gosub servo_value ' Get the servo no. and position value.
 serout 0,n2400,(255,servo,position) ' Send to the SSC.
 if bit0 = 0 then skip_delay ' Delay after every 2nd xmission.
 pause delay
skip_delay:
 next steps
goto again ' Endless loop.

' Look up the servo number and position value. Since the same data is
' sent to two different servos, the position table is half the length
' of the servo table. Looking up the correct position entry requires
' dividing the step number by 2.
Servo_value:
 lookup steps,(1,4,0,2,1,4,0,2,3,5,1,4,3,5),servo
 let temp = steps/2
 lookup temp,(80,200,170,50,50,80,200),position
return

Listing 2. QBASIC (PC) Demonstration Program

DEFINT A-Z
Sync.byte = 255

' The line below assumes that the B jumper is installed for
' 9600-baud operation, and that the Mini SSC is connected
' to COM1.

OPEN "com1:9600,N,8,1,CD0,CS0,DS0,OP0" FOR OUTPUT AS #1
CLS
PRINT " MINI SERIAL SERVO CONTROLLER"
PRINT : PRINT
PRINT "At the prompt, type the servo number (0 to 7), a comma,
PRINT "and a position value (0 to 254)."
PRINT "Press <CNTL> - <Break> to end."
Again:
 LOCATE 8, 1
 PRINT " "
 LOCATE 8, 1
 INPUT "Servo,position>", Servo, Position
' Perform some basic error trapping
 IF Servo > 7 THEN Servo = 7
 IF Servo < 0 THEN Servo = 0
 IF Position > 254 THEN Position = 254
 IF Position < 0 THEN Position = 0
 PRINT #1, CHR$(Sync.byte); CHR$(Servo); CHR$(Position);
GOTO Again

PC-Specific Instructions

Two Mini SSCs may be connected in parallel to the output of a PC serial (com) port.
A simple program (listing 2) is all that’s required to command the servos. If your
application requires driving more controllers, either use a separate port for each pair
of controllers, or add a buffer capable of driving at least 2 mA per connected Mini
SSC. The Mini SSC is also compatible with the RS-422 signaling protocol. Connect
TD+ to S(in) 1 and TD– to S(in) 2.

Connecting the Mini SSC to a PC

The diagram below shows how to connect the serial output of PC com ports to the
Mini SSC. The diagrams include additional connections that loop back the port’s
handshaking lines. The Mini SSC doesn’t use these connections, and some software
requires handshaking in order to work properly. (The example QBASIC program in
listing 2 disables handshaking when it opens the com port, so the loopback connections
aren’t required.)

Note: The additional connections shown above are
loopbacks for the handshaking lines. These deactivate
hardware handshaking required by some software.

1

DB-9 Female
(SOLDER SIDE)

5

1

2
113

DB-25 Male
(SOLDER SIDE)

2

1

