

CB-C7, 5-VOLT 0.8-MICRON CELL-BASED CMOS ASIC

Description

CB-C7 cell-based product family is a 0.8-micron (drawn) process with two- or three-layer metalization and is offered in 22 I/O pad ring step sizes. It is ideal for applications such as handheld terminals, personal digital office assistants, word spellers, HDD, cellular phones, LAN, multimedia graphics and a variety of high-volume PC-based applications. The family allows designing complex logic functions, up to 237,000 usable gates of user-defined logic. Megamacro blocks may include industry-standard CPU cores, peripherals, and analog functions — thus enabling complete system-on-a-chip solutions.

The CB-C7 series consists of two types of architectures, a Fast Turn FT-type embedded array and a High Density HDtype full standard cell. The FT-type uses fully-diffused standard cell embedded cores with sea-of-gates userdefinable logic. The FT solution offers gate-array-like turnaround times while allowing the incorporation of large embedded functions. Another important advantage is that the FT-type is well-suited for multiple designs built around a common embedded CPU function, such as the V30HL (8086) CPU.

The HD-type is comprised of fully-diffused standard cell architecture for both the embedded cores and the userdefined logic area. This solution offers an optimal die size for economic cost-effective volume production. Full gate delay models are available for both in Verilog[®], a golden simulator, as part of NEC's OpenCAD[®] Design System.

Features

- Advanced sub-micron drawn gate length CMOS technology with three-layer metalization
- Extensive embedded core library includes CPU, analog, and video DAC functions
- □ Low power dissipation 3.9 µW/gate/MHz at 5 V
- □ 3 V block library for low power applications
- □ Packages offered: QFP, PLCC, TQFP and CPGA
- Datapath compiler available for multipliers, FIFOs, and register files
- □ Gate delay of 0.33 ns (F/O = 1; L = 0 mm)

Figure 1. Integrated HDD Solution with CB-C7 Cell-Based ASIC with Embedded 78K3 MPU, Compiled SRAMs and A/D Converters

Digital Megamacros in Library

Compatible	NEC	
Device	Code	Description
8088	V20HL (NA70108H)	8-bit CPU
8086	V30HL (NA70116H)	16-bit CPU
78K3	NA78350	16-bit Microcontroller
Z80	NA70008A	Z80™ 8-bit CPU
80C42	NA80C42H	Keyboard Controller
72065B	NA72065B	Floppy Disk Controller
72020	NA72020	Graphics Display Controller
8237A	NA71037	Programmable DMA Controller
8251A	NA71051	Serial Communications Controller
8254	NA71054	Interval Timer
8255A	NA71055	Peripheral Interface
8259A	NA71059	Interrupt Controller
4991A	NA4991A	Real Time Clock

Analog Megamacros in Library

NEC	
Code	Description
XXXA	135 MHz triple 8-bit video DAC
AADA820A	20 MHz triple 8-bit video DAC
AADA8GPC	8-bit general-purpose DAC
AAAD820A	20 MHz 8-bit video ADC
AACP25NA	High-speed (25ns) comparator
AACP80NA	High-speed (80ns) comparator
AACP01UA	General-purpose comparator
AAOP10MA	High-speed operational amplifier
AAOP01MA	General-purpose operative amplifier
AASWGPCA	Analog switch with control
AASWGPTA	Analog switch with control

OpenCAD Design System

CB-C7 is supported by the OpenCAD Design System, an ASIC design environment that merges the best of today's most powerful CAD ASIC software design tools and proprietary tools, such as a floorplanner and module compilers, into a single environment.

Sample design kits are available at no charge to qualified users: contact the NEC ASIC Design Center nearest you for more information. A software license agreement is required.

Digital Megafunctions

In addition to the V30HL/V20HL 8086, 8088 product families and support peripherals, NEC offers complex standard IC functions as well, such as the NA72070 Advanced Floppy Disk Controller, NA80C42 Keyboard Controller, A/D and D/A converters for multimedia applications. Compiled RAM and ROM are also available to satisfy a myriad of different product applications.

Analog Blocks

NEC is building upon its expertise in analog standard ICs by now offering select members of its analog family as analog megamacros. These megamacros are layed out in the I/O area to maximize die area in the core for digital functions and user-defined logic. This separation of the analog and digital functions and separate analog V_{DD} and V_{SS} line also contributes to better noise isolation.

Digital and analog functions on a CB-C7 cell-based array are tested separately.

Test and Emulation Bus Architecture

The test and emulation bus architecture, MACRObus[™], used for CB-C7 design methodology approach to the testing and emulation of embedded functions. It allows the emulation of the production chip for system validation, reuse of the test bus circuit and use of standard micro IC functional test vectors and system vectors in a modularized fashion. It also provides real-time emulation support and its test bus structure allows testing of on-chip RAM/ROM or analog blocks.

On-Chip Compiled Memory

RAM and ROM blocks can be custom compiled in the CB-C7 design environment.

The RAM and ROM compiler allows ASIC designers to generate silicon-efficient memory blocks of specific size and performance to suit exact system requirements quickly and efficiently. The table of compilable RAM and ROM, shown on page 4, describes three different MUX ratios along with the minimum and maximum size. For the 16:1 MUX, the minimum word depth is 256 and the minimum bit width is 1. The word depth can increase by 64 words in increments up to 2K and the bit width can increase by 1 bit up to a maximum of 8 bits. The other RAM and ROM configurations are determined in the same fashion.

Typical examples of applications containing digital memory and analog cores and their step size is shown in Figure 2.

3 V Operation

CB-C7 CMOS is ideal for low power, high volume, battery-operated products. The CB-C7 process has been recharacterized to operate at two voltage levels, 5 V \pm 10% and 3.0 V \pm 10%. Not only have macrocells been recharacterized to operate at the lower voltage, but complex megamacros and compiled memory as well. For more information on the 3-volt version of CB-C7, please refer to the CB-C7 3-Volt Data Sheet (Document No. 70195).

Figure 2. Typical Application Example (See Table 2)

Trademarks

[®]Verilog is a registered trademark of Cadence Design System, Inc.
 [®]OpenCAD is a registered trademark of NEC Electronics Inc.
 [™]Z80 is a trademark of Zilog, Inc.

™MACRObus is a trademark of NEC Electronics Inc.

				HD-Type Usa	ble Gates ²	FT-Type Usa	ble Gates ²
No.	Step Size	I/O ¹	Total Raw Grids	2-Layer Metal	3-Layer Metal	2-Layer Metal	3-Layer Metal
1	B18	88	35,400	5,930	7,040	3,140	3,860
2	B57	104	49,600	8,840	10,430	4,720	5,760
3	B97	120	66,600	12,390	14,560	6,660	8,070
4	C37	136	86,000	16,530	19,370	8,910	10,760
5	C76	152	107,700	21,150	24,740	11,440	13,780
6	D16	168	131,800	26,460	30,900	14,340	17,230
7	D55	184	158,300	32,230	37,590	17,490	20,990
8	D75	192	172,500	35,390	41,260	19,230	23,050
9	E15	208	202,700	42,160	49,100	22,930	27,450
10	E54	224	235,800	49,360	57,440	26,870	32,140
11	E94	240	270,800	57,290	66,630	31,220	37,300
12	F34	256	307,800	65,810	76,500	35,890	42,850
13	F74	272	348,300	74,730	86,820	40,780	48,660
14	G14	288	390,700	84,410	98,030	46,100	54,970
15	G53	304	435,500	94,480	109,680	51,620	61,520
16	G93	320	482,100	105,330	122,240	57,580	68,590
17	H33	336	531,700	116,770	135,470	63,860	76,040
18	H72	352	583,800	128,550	149,100	70,330	83,710
19	J32	376	662,900	147,680	171,230	80,830	96,170
20	J71	392	720,900	160,890	186,510	88,090	104,770
21	K11	408	781,300	174,960	202,780	95,820	113,930
22	K90	440	907,800	204,550	236,990	112,070	133,200

Table 1. CB-C7 Step Sizes and Usable Gate Count

Notes: 1. I/O may be configured as VDD/GND

2. Usable gates: equivalent estimated 2-input NAND, will vary depending on specific design

a. 2-layer metal FT = 55% utilization for routing HD = 65% utilization for routing

b. 3-layer metal

FT = 65% utilization for routing HD = 75% utilization for routing

c. Grid/gate ratio^{*} FT = 4.3 grid/gate ratio HD = 2.8

d. Grid to gate ratio based on conversion from other libraries will be different. Contact NEC Design Center for die size estimation * Based on CMOS-6 L302 cell equivalents

Table 2. Examples of Core Use (Refer to Figure 2)

Application	Core	UDL*	I/O	Step Size	Metalization	Package		
Cellular Phone	Z80	40,000	102	E94	3LM	120 TQFP		
Wireless or GPS	V20HL	10,000	88	D55	3LM	100 TQFP		
Hard Disk Drive	V20HL 71054 71059	3,000	80	D55	2LM	100 TQFP		
Graphics Controller	Triple Video DAC HS RAM 256 W x 8 bits x 3	40,000	182	E94	3LM	208 PQFP		
Document Scanner	ROM 256 W x 16 bits RAM 64 W x 8 bits x 5	3,000	88	C37	2LM	100 QFP		

* UDL = User-Defined Logic; measured in 2-input NAND gate equivalents of CMOS-6 family

Table 3. Compilable RAM, ROM and Datapath Elements for CB-C7

Compiled SRAM							
– Sin	igle port, asyr	nchronous ope	ration				
	Min Size	Max Size	Increment				
16:1 Column MUX	256 x 1	2K x 8	64 words, 1 bit				
8:1 Column MUX	128 x 1	1K x 16	32 words, 1 bit				
4:1 Column MUX	64 x 1	512 x 32	16 words, 1 bit				
Com	Compiled High-Speed SRAM						
 Single port, asynchronous high speed operation 							
– Spe	eed: 7ns (typ)	(512W x 8 bit)				
	Min Size	Max Size	Increment				
8:1 Column MUX	16 x 1	2K x 20	16 words, 1 bit				
Со	mpiled Dua	I Port RAM					
– Du	al port, async	hronous opera	ation				
– Spo	eed: 24ns (typ	o) (512W x 8 b	it)				
	Min Size	Max Size	Increment				
8:1 Column MUX	16 x 1	2K x 32	16 words, 1 bit				

 * Please check with the Design Center for exact specifications and availability

Example for Compiled High-Speed SRAM: For a 8:1 column MUX minimum size is 16×1 . Increments can thus be 16, 32, 48 words up to 2K max. Bit size can be a minimum of 1 bit, one bit at a time increments to 20 bits max.

	Compile	d ROM						
– Sir	ngle port, asyr	nchronous ope	ration					
 Speed: 35ns (typ) (512W x 8 bit) 								
	Min Size	Max Size	Increment					
32:1 Column MUX	512 x 1	32K x 16	512 words, 1 bit					
16:1 Column MUX	256 x 2	16K x 32	256 words, 1 bit					
8:1 Column MUX	128 x 4	8K x 64	128 words, 2 bits					
	Datapath I	Modules						
	Min Size	Max Size	Increment					
Multiplier	6 x 6	32 x 32	2 bits					
Register File	8 x 2	256 x 32	4 words, 1 bit					
FIFO	8 x 2	256 x 32	2 words, 1 bit					

Absolute Maximum Ratings

Power supply voltage, V _{DD}	–0.5 to +6.5 V
Input/output voltage, V _I / V _O	-0.5 V to V _{DD} + 0.5 V
Output current, I _O	
I _{OL} (min) = 6 mA (typ)	12 mA
I _{OL} (min) = 8 mA (typ)	24 mA
I _{OL} (min) = 12 mA (typ)	36 mA
Operating temperature, T _{OPT}	–40 to +85°C
Storage temperature, T _{STG}	–65 to +150°C

Caution: Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should not be operated outside the recommended operating conditions.

Input/Output Capacitance

 $V_{DD} = V_{I} = 0 V; f = 1 MHz$

Terminal	Symbol	Тур	Max	Unit
Input	C _{IN}	10	20	pF
Output	C _{OUT}	10	20	pF
I/O	C _{I/O}	10	20	pF
Nata				

Note:

(1) Values include package pin capacitance.

Power Consumption

Description	Limits (max)	Unit	Test Conditions
Internal cell (L302) 3.9	µW/MHz	F/O = 2; L = 2 mm
Input block	45	µW/MHz	F/O = 2; L = 2 mm
Output block	0.97	mW/MHz	C _L = 15 pF

Recommended Operating Conditions

		CMOS	Level	TTL Level		
Parameter	Symbol	Min	Мах	Min	Max	Unit
Power supply voltage	V _{DD}	4.5	5.5	4.75	5.25	V
Ambient temperature	T _A	- 40	+85	0	+70	°C
Input voltage	V	0	V _{DD}	0	V _{DD}	V
High-level input voltage	V _{IH}	0.7 V _{DD}	V _{DD}	2.2	V _{DD}	V
Input rise or fall time (normal input)	t _{RI} , t _{FI}	0	200	0	200	ns
Input rise or fall time (Schmitt-trigger input)	t _{RI} , t _{FI}	0	10	0	10	ms
Positive Schmitt-trigger voltage	V _P	1.8	4.0	1.2	2.4	V
Negative Schmitt-trigger voltage	V _N	0.6	3.1	0.6	1.8	V
Hysteresis voltage	V _H	0.3	1.5	0.3	1.5	V

Note: The rise/fall time given for a Schmitt-trigger input buffer varies depending on the operating environment. Simultaneous switching of output buffers should be analyzed before deciding to use a Schmitt-trigger input buffer.

AC Characteristics

 $V_{DD} = 5 \text{ V} \pm 10\%; \ \text{T}_{A} = -40 \text{ to } +85^{\circ}\text{C}$

Parameter	Symbol	Min	Тур	Мах	Unit	Conditions
Internal toggle frequency	f _{TOG}	140			MHz	D-F/F; F/O = 2
Delay time, 2-input NAND Gate*						
Standard gate (F302) HD-type	t _{PD}		180 (HL)		ps	F/O = 1; L = 0 mm
Standard gate (F302) HD-type	t _{PD}		330 (HL)		ps	F/O = 2; L = 1 mm
Low power gate (L302) HD-type	t _{PD}		210 (HL)		ps	F/O = 1; L = 0 mm
Low power gate (L302) HD-type	t _{PD}		490 (HL)		ps	F/O = 2; L = 1 mm
Delay time, Buffer						
Input buffer (FI01)	t _{PD}		600		ps	F/O = 2; L = 2 mm
Output buffer (FO01)	t _{PD}		2200		ps	C _L = 15 pF, IOL = 4mA
Rise and Fall Times						
Output rise time (FO01)	t _R		4000		ps	C _L = 15 pF, IOL = 4mA
Input fall time (FO01)	t _F		2000		ps	C _L = 15 pF, IOH= -2mA

DC Characteristics

 $V_{DD} = 5 V \pm 10\%$; $T_{A} = -40 \text{ to } +85^{\circ}\text{C}$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Static current (Note 1)	۱ _L		0.1	400	μA	$V_1 = V_{DD}$ or GND
Input leakage current						
Normal input	l _l		±0.01	±10	μA	$V_1 = V_{DD}$ or GND
50 kΩ pull-up	l,	-30	-100	-300	μA	V _I = GND
5 kΩ pull-up	l _i	-0.35	-1.0	-2.2	mA	V _I = GND
50 kΩ pull-down	l,	30	100	300	μA	$V_{I} = V_{DD}$
Off-state output leakage current						
Normal Input	I _{OZ}		± 0.01	± 10	μA	$V_0 = V_{DD}$ or GND
50 kΩ pull-up	l _i	-30	-100	-300	μA	V _I = GND
5 kΩ pull-up	l _i	-0.35	-1.0	-2.2	mA	V _I = GND
50 kΩ pull-down	l,	30	100	300	μA	$V_{I} = V_{DD}$
Input clamp voltage (Note 2)	V _{IC}	-1.2			V	l _l = 18 mA
Output short circuit current (Note 3)	I _{os}	-250			mA	V ₀ =0 V
Low-level output current (CMOS)						-
4 mA (Note 4)	I _{OL}	4.0			mA	$V_{OL} = 0.4 V$
8 mA (Note 4)	I _{OL}	8.0			mA	V _{OL} = 0.4 V
12 mA (Note 4)	I _{OL}	12.0			mA	V _{OL} = 0.4 V
High-level output current (CMOS)						
4 mA (Note 4)	І _{ОН}	-2.0			mA	$V_{OH} = V_{DD} - 0.4 V$
8 mA (Note 4)	І _{ОН}	-4.0			mA	$V_{OH} = V_{DD} - 0.4 V$
12 mA (Note 4)	I _{ОН}	-6.0			mA	V _{OH} = V _{DD} -0.4 V
Low-level output current (TTL)						
6 mA (Note 5)	I _{OL}	6.0			mA	V _{OL} = 0.4 V
High-level output current (TTL)	-					
6 mA (Note 5)	I _{OH}	-0.5			mA	V _{OH} = 2.4 V
Low-level output voltage	V _{OL}			0.4	V	$I_{OL} = 4 \text{ mA}$
	V _{OL}			0.4	V	$I_{OL} = 8 \text{ mA}$
	V _{OL}			0.4	V	I _{OL} = 12 mA
High-level output voltage	V _{OH}	V _{DD} -0.4			V	I _{OH} = -2 mA
	V _{OH}	V _{DD} -0.4			V	I _{OH} = -4 mA
	V _{OH}	V _{DD} -0.4			V	I _{OH} = -6 mA
	V _{OH}	2.4			V	I _{OH} = -0.5 mA

Notes:

(1) The maximum value reflects the use of pull-up/pull-down resistors and oscillator blocks. Contact an NEC ASIC Design Center for assistance in calculation.

(2) The input clamp voltage is held at a specified level when any input signal voltage is negative. The input signal undershoot or its ringing is clamped at this voltage.

(3) Rating is for only one output operating in this mode for less than 1 second.

(4) CMOS-level output buffer (V_{DD} = 5 V ± 10%, T_A= -40°C to +85°C) (5) TTL-level output buffer (V_{DD} = 5 V ± 5%, T_A= 0 to +70°C)

Table 4. Package Options

Pad Ring Step Sizes	B18	B57	B97	C37	C76	D16	D55	D75	E15	E54	ES
Package Type											
Plastic Quad Flatpack (QFP)											
44-pin (0.8 mm lead pitch)	А	А	А	А	А	А	-	_	_	_	-
52-pin (1 mm lead pitch)	А	А	А	А	А	А	А	-	-	-	-
64-pin (1 mm lead pitch)	А	А	А	А	А	А	А	А	А	А	A
80-pin (0.8 mm lead pitch)	А	А	А	А	А	А	А	А	А	А	/
100-pin (0.65 mm lead pitch)	-	А	А	А	А	А	А	А	А	А	
120-pin (0.8 mm lead pitch)	-	-	А	А	А	А	А	А	А	А	
136-pin (0.65 mm lead pitch)	_	_	А	А	А	А	А	А	А	А	
160-pin (0.65 mm lead pitch)	-	-	-	-	-	А	А	А	А	А	
160 ¹ -pin (0.65 mm lead pitch)	-	-	-	-	-	-	-	А	А	А	
160 ² -pin (0.65 mm lead pitch)	_	-	_	-	_	-	-	А	А	А	
Plastic Quad Flatpack (QFP-FP)											
100-pin (0.5 mm lead pitch)	-	А	А	А	А	А	А	А	А	А	
120-pin (0.5 mm lead pitch)	_	-	А	А	А	А	А	А	А	А	
144-pin (0.5 mm lead pitch)	-	-	-	А	А	А	А	А	Α	А	
160-pin (0.5 mm lead pitch)	-	_	_	_	_	А	А	А	А	А	
160 ² -pin (0.5 mm lead pitch)	-	-	-	-	-	-	-	А	Α	Α	
176-pin (0.5 mm lead pitch)	-	-	-	-	-	А	А	А	А	А	
176 ¹ -pin (0.5 mm lead pitch)	_	_	_	_	_	_	_	_	_	А	
176 ² -pin (0.5 mm lead pitch)	_	_	_	_	_	_	_	_	_	А	
208-pin (0.5 mm lead pitch)	-	_	_	-	-	_	-	-	-	-	
Thin Plastic Quad Flatpack (TQF	P)										
64-pin (0.5 mm lead pitch)	А	А	А	А	_	_	_	_	_	_	
80-pin (0.5 mm lead pitch)	А	А	А	А	-	-	-	-	-	-	
100 ¹ -pin (0.5 mm lead pitch)	-	А	А	А	А	А	А	А	А	-	
Plastic Leaded Chip Carrier (PLC	C)										
68-pin (50 mils lead pitch)	-	_	_	А	А	А	А	А	А	А	
84-pin (50 mils lead pitch)	-	-	_	А	А	А	А	А	А	А	

1 = Cu lead frame

A = Available or under development

 2 = Cu lead frame and heat sink - = Unavailable

Note: NEC reserves the right to alter these package options based on the results of qualification. Each cell-based design/package combination must be cleared for manufacturing suitability. For the latest package availability for CB-C7, please contact your local NEC ASIC Design Center.

Typical CB-C7 Package Marking

CB-C7 Numbering System

Part Number	Description
µPD93XXX	Contains logic only or logic plus RAM and/or ROM
µPD94XXX	Contains the same as µPD93XXX but with ROM code change
µPD95XXX	Same as µPD93XXX but contains megamacro blocks, such as a 710XXX or V20HL/V30HL
µPD96XXX	Same as µPD95XXX but with a ROM code change

Table 4. Package Options (Cont'd)

Pad Ring Step Size	F34	F74	G14	G53	G93	H33	H72	J32	J71	K11	K90
Package Type											
Plastic Quad Flatpack (QFP)											
64-pin (1 mm lead pitch)	А	-	-	-	-	-	-	-	-	-	_
80-pin (0.8 mm lead pitch)	А	-	-	-	-	-	-	-	-	-	-
100-pin (0.65 mm lead pitch)	А	-	-	-	-	-	-	-	-	-	-
120-pin (0.8 mm lead pitch)	А	А	А	А	А	А	А	А	_	_	_
136-pin (0.65 mm lead pitch)	А	А	А	А	А	А	А	А	-	-	-
160-pin (0.65 mm lead pitch)	А	А	А	А	А	А	А	А	А	А	А
160 ¹ -pin (0.65 mm lead pitch)	А	А	А	А	А	А	А	А	А	А	А
160 ² -pin (0.65 mm lead pitch)	А	А	А	А	А	А	А	А	А	А	А
184 ¹ -pin (0.65 mm lead pitch)	А	А	А	А	А	А	А	А	А	А	Α
Plastic Quad Flatpack (QFP-FP)											
100-pin (0.5 mm lead pitch)	А	А	_	_	_	_	_	_	_	-	-
120-pin (0.5 mm lead pitch)	А	А	А	А	А	А	А	-	-	-	-
144-pin (0.5 mm lead pitch)	А	А	А	А	А	А	А	-	-	-	-
160-pin (0.5 mm lead pitch)	А	А	А	А	А	А	А	А	А	А	А
160 ² -pin (0.5 mm lead pitch)	А	А	А	А	А	А	А	-	-	-	-
176-pin (0.5 mm lead pitch)	А	А	А	А	А	А	А	А	А	А	А
176 ¹ -pin (0.5 mm lead pitch)	А	А	А	А	А	А	А	А	А	А	А
176 ² -pin (0.5 mm lead pitch)	А	А	А	А	А	А	А	_	_	_	_
208-pin (0.5 mm lead pitch)	А	А	А	А	А	А	А	А	А	А	А
208 ¹ -pin (0.5 mm lead pitch)	_	_	А	А	А	А	А	А	А	А	А
208 ² -pin (0.5 mm lead pitch)	_	_	А	А	А	А	А	А	А	А	А
240 ¹ -pin (0.5 mm lead pitch)	-	_	А	А	А	А	А	А	А	А	А
256 ¹ -pin (0.4 mm lead pitch)	_	_	А	А	А	А	А	А	А	А	А
272 ¹ -pin (0.5 mm lead pitch)	-	-	-	-	-	-	-	А	А	А	А
304 ¹ -pin (0.5 mm lead pitch)	_	-	-	-	_	_	-	-	_	А	А

 1 = Cu lead frame

A = Available or under development - = Unavailable

 2 = Cu lead frame and heat sink

Note: NEC reserves the right to alter these package options based on the results of qualification. Each cell-based design/package combination must be cleared for manufacturing suitability. For the latest package availability for CB-C7, please contact your local NEC ASIC Design Center.

Figure 3. Popular CB-C7 Package 100-pin TQFP ■ 14 mm Body Size

NEC's ASIC Design System

NEC supports its ASIC products with a comprehensive CAD system that significantly reduces the time and expense usually associated with the development of semi-custom devices. Designers can now choose from today's most popular third-party software tools, as shown in Table 5.

NEC's OpenCAD Design System is a front-end to backend ASIC design package that merges several advanced CAE/CAD tools into a single structure. One can select a single CAE platform, or can mix and match tools from a variety of third-party vendors. The design flow combines tools for floorplanning, logic synthesis, automatic test generation, accelerated fault-grading, full timing simulation, and advanced place-and-route algorithms. RAM/ROM and Datapath Compilers are also available for use in CB-C7 designs. This flexible design environment ensures accurate designs. See Table 5 for software tool support.

There are two basic methods for design entry, schematic capture and HDL specification. After the initial EDIF netlist is generated, basic design flow differs little between the two methods.

Tools CAD Company	Schematic Entry	Synthesis	Simulation	Static Timing Analysis	Floorplanner	Place and Route	Fault Simulation	ATPG
Cadence	Ι		*			I		
Mentor	Ι			+			+	
Viewlogic								
Synopsys				I				
IKOS							Ι	
Zycad/NECplus			*					
Intelligen								
NEC			*					

Table 5. CAD Tools Available for CB-C7

Key: [indicates planned support – check with local NEC Design Center for latest availability; * Golden simulator; + Available through simulation libraries.

A top-down modeling methodology is possible by means of HDL specification. Designers can concentrate their design effort at a higher level of abstraction, specifying, modeling, and simulating their designs at the system level. This leaves the details of the gate-level implementation to

Figure 4. CB-C7 HDL-Based Design Flow

the synthesis tools. After having verified proper functionality, designers are free to explore functional and architectural trade-offs and optimize chip performance while minimizing chip area. An engineer can evaluate several architectures and select the best solution before committing to silicon.

The more traditional method of design entry and schematic capture, is also available with a wide variety of third-party tools, as shown in the table.

One of the key benefits of both ASIC design flows is that post place-and-route simulation can be accomplished at the customer's site since NEC offers designers a choice of simulators with the "golden simulator" status. Golden simulator status means that after receiving the post placeand-route simulation results from the customer, NEC can proceed directly to photomask production, by-passing the additional post-simulation steps.

To simplify simulation and testing of embedded cores and megamacros, full Verilog gate delay models are provided for all megamacros. The megamacros are then fully tested with a standard set of production test vectors.

The floorplanner tool provides a realistic estimate of wire length by grouping hierarchical blocks in a specific physical

location on the chip. This allows for more accurate simulation results by minimizing critical path interconnect delays. The floorplanner also allows graphical I/O assignment capabilities and generates a delay file for postfloorplanner simulation.

The ECO option allows the designer to make minor corrections in the design without requiring an entirely new placement and routing of the device. The tool ensures that relatively small changes, such as connectivity changes, will not greatly impact the timing of the current design. This can vastly improve turn-around time for the design.

NEC also incorporates proprietary tools to facilitate the design process. A single delay calculator is used for all CAE platforms to ensure consistent timing and simulation results. A comprehensive design rule check program (DRC) reports design rule violations as well as chip utilization statistics for the design netlist. The generated report contains information such as cell count and usage rate as well as net and total pin counts. Unused input pins, violations in pin naming conventions, and excessive fanout limits are examples of the design rule violations reported by this program.

Figure 5. CB-C7 Schematic-Based Design Flow

CB-C7/5V

Cell Library List

The CB-C7 standard cell library offers a variety of blocks, macrocells and megafunctions. SSI library elements shown include gates, flip-flop circuits, and shift registers. The names and functions of these blocks are designed to be compatible with those of the CMOS-7 and CMOS-6 families.

Block List

Block Name	Description	I _{ol} (mA)	Area ¹ (grids)
	Interface Blocks		
Input E	Buffers		
FI01 FID1 FIU1 FIW1	Input buffer, CMOS in Input buffer, CMOS in, 50 k Ω pull-down res. Input buffer, CMOS in, 50 k Ω pull-up res. Input buffer, CMOS in, 5 k Ω pull-up res.	- - -	12/6 12/6 12/6 12/6
FI02 FID2 FIU2 FIW2	Input buffer, TTL in Input buffer, TTL in, 50 k Ω pull-down res. Input buffer, TTL in, 50 k Ω pull-up res. Input buffer, TTL in, 5 k Ω pull-up res.	- - -	12/7 12/7 12/7 12/7
FDS1 FIS1 FUS1 FWS1	Input buffer, CMOS Schmitt in, 50 k Ω pull-down res. Input buffer, CMOS Schmitt in Input buffer, CMOS Schmitt in, 50 k Ω pull-up res. Input buffer, CMOS Schmitt in, 5 k Ω pull-up res.		20/14 20/14 20/14 20/14
FDS2 FIS2 FUS2 FWS2	Input buffer, TTL Schmitt in, 50 k Ω pull-down res. Input buffer, TTL Schmitt in Input buffer, TTL Schmitt in, 50 k Ω pull-up res. Input buffer, TTL Schmitt in, 5 k Ω pull-up res.	- - -	28/17 28/17 28/17 28/17
OR Inp	ut Buffers		
FIOA FIDA FIUA FIWA	Input buffer, CMOS-NOR in Input buffer, CMOS-NOR in, 50 k Ω pull-down res. Input buffer, CMOS-NOR in, 50 k Ω pull-up res. Input buffer, CMOS-NOR in, 5 k Ω pull-up res.	- - -	16/9 16/9 16/9 16/9
FISA FDSA	Input buffer, CMOS-Schmitt NOR in Input buffer, CMOS-Schmitt NOR in, 50 k Ω pull-down res.	-	32/19 32/19
FUSA FWSA	Input buffer, CMOS-Schmitt NOR in, 50 k Ω pull-up res.	-	32/19 32/19
FI0B FIDB FIUB FIWB	Input buffer, TTL NOR in Input buffer, TTL NOR in, 50 k Ω pull-down res. Input buffer, TTL NOR in, 50 k Ω pull-up res. Input buffer, TTL NOR in, 5 k Ω pull-up res.	- - -	16/8 16/8 16/8 16/8
Output	Buffers		
FO01 FO02 FO03 FT01	Output buffer, CMOS out Output buffer, CMOS out Output buffer, CMOS out Output buffer, TTL out	4 8 12 6	8/5 16/9 16/9 16/10

Block Name	Description	I _{oL} (mA)	Area ¹ (grids)
Output	Buffers (Cont.)		
B007 B0D7	Output buffer, CMOS 3-state out Output buffer, CMOS 3-state out, 50 k Ω pull-down res.	8 8	24/15 24/15
B0U7	Output buffer, CMOS 3-state out, 50 k Ω pull-up res.	8	24/15
B0W7	Output buffer, CMOS 3-state out, 5 k Ω pull-up re		24/15
B008 B0D8	Output buffer, CMOS 3-state out Output buffer, CMOS 3-state out, 50 k Ω pull-down res.	4 4	20/12 20/12
B0U8	Output buffer, CMOS 3-state out, 50 k Ω pull-up res.	4	20/12
B0W8	Output buffer, CMOS 3-state out, 5 k Ω pull-up re		20/12
B009 B0D9	Output buffer, CMOS 3-state out Output buffer, CMOS 3-state out, 50 k Ω pull-down res.	12 12	24/15 24/15
B0U9	Output buffer, CMOS 3-state out, 50 k Ω pull-up res.	12	24/15
B0W9	Output buffer, CMOS 3-state out, 5 k Ω pull-up re		20/15
B00A B0UA	Output buffer, TTL in, TTL 3-state out Output buffer, TTL in, TTL 3-state out, 50 k Ω pull-up res.	6 6	32/20 32/20
B0WA	Output buffer, TTL in, TTL 3-state out, 5 k Ω pull-up res.	6	32/20
BT08	Output buffer, TTL 3-state out	6	20/13
BTU8 BTW8	Output buffer, TTL 3-state out, 50 k Ω pull-up res Output buffer, TTL 3-state out, 50 k Ω pull-up res		20/13 20/13
Open D	Drain Output Buffers		
EXT1 EXT3 EXW3	Output buffer, N-ch open drain Output buffer, N-ch open drain, 50 k Ω pull-up res Output buffer, N-ch open drain, 5 k Ω pull-up res.		8/4 8/4 8/4
EXT2 EXT4	Output buffer, P-ch open drain Output buffer, P-ch open drain, 50 k Ω pull-up res	*-2 s. *-2	8/4 8/4
EXTA EXTC	Output buffer, P-ch Output buffer, P-ch open drain	*-4 *-4	12/7 12/7
EXT6 EXT8	Output buffer, P-ch open drain, 50 k Ω pull-up res. Output buffer, P-ch open drain,		12/7
	50 k Ω pull-down res.	*-6	12/7
EXT5 EXT7 EXW7	Output buffer, N-ch open drain Output buffer, N-ch open drain, 50 k Ω pull-up res Output buffer, N-ch open drain, 5 k Ω pull-up res.	12 . 12 .12	12/7 12/7 12/7
EXT9 EXTB EXWB	Output buffer, N-ch open drain, Output buffer, N-ch open drain, 50 k Ω pull-up res Output buffer, N-ch open drain, 5 k Ω pull-up res.	8 . 8 8	12/7 12/7 12/7
Bi-dire	ctional I/O Buffers		
B001 B0D1	I/O buffer, CMOS in, CMOS 3-state out I/O buffer, CMOS in, CMOS 3-state out,	8 8	36/21 36/21
B0U1	50 k Ω pull-down res. I/O buffer, CMOS in, CMOS 3-state out, 50 k Ω pull-up res.	8	36/21
B0W1	I/O buffer, CMOS in, CMOS 3-state out, 5 kΩ pull-up res.	8	36/21
B002 B0D2	I/O buffer, TTL in, CMOS 3-state out I/O buffer, TTL in, CMOS 3-state out, 50 k Ω pull-down res.	8 8	36/22 36/22

CB-C7/5V

Block Name	Description	I _{OL} (mA)	Area ¹ (grids)
	Interface Blocks (Cont.)		
Bi-dire	ctional I/O Buffers (Cont.)		
B0U2	I/O buffer, TTL in, CMOS 3-state out,	8	36/22
B0W2	50 k Ω pull-up res. I/O buffer, TTL in, CMOS 3-state out, 5 k Ω pull-up res.	8	36/22
B003 B0D3	I/O buffer, CMOS in, CMOS 3-state out I/O buffer, CMOS in, CMOS 3-state out,	4 4	32/18 32/18
B0U3	50 k Ω pull-down res. I/O buffer, CMOS in, CMOS 3-state out, 50 k Ω pull-up res.	4	32/18
B0W3	I/O buffer, CMOS in, CMOS 3-state out, 5 k Ω pull-up res.	4	32/18
B004	I/O buffer, TTL in, CMOS 3-state out	4	32/19
B0D4	I/O buffer, TTL in, CMOS 3-state out, 50 k Ω pull-down res.	4	32/19
B0U4	I/O buffer, TTL in, CMOS 3-state out, 50 k Ω pull-up res.	4	32/19
B0W4	I/O buffer, TTL in, CMOS out, 5 k Ω pull-up res.	4	32/19
B005 B0D5	I/O buffer, CMOS in, CMOS 3-state out I/O buffer, CMOS in, CMOS 3-state out,	12 12	36/21 36/21
B0U5	50 k Ω pull-down res. I/O buffer, CMOS in, CMOS 3-state out, 50 k Ω pull-up res.	12	36/21
B0W5	I/O buffer, CMOS in, CMOS 3-state out, 5 k Ω pull-up res.	12	36/21
B006 B0D6	I/O buffer, TTL in, CMOS 3-state out I/O buffer, TTL in, CMOS 3-state out, 50 k Ω pull-down res.	12 12	36/22 36/22
B0U6	I/O buffer, TTL in, CMOS 3-state out,	12	36/22
B0W6	50 k Ω pull-up res. I/O buffer, TTL in, CMOS 3-state out, 5 k Ω pull-up res.	12	36/22
B00A B0UA	I/O buffer, TTL in, TTL 3-state out I/O buffer, TTL in, TTL 3-state out,	6 6	32/20 32/20
B0WA	50 k Ω pull-up res. I/O buffer, TTL in, TTL 3-state out, 5 k Ω pull-up res.	6	32/20
BG01 BGD1	I/O buffer, CMOS in, CMOS 3-state out I/O buffer, CMOS in, CMOS 3-state out,	8 8	52/31 52/31
BGU1	50 k Ω pull-down res. I/O buffer, CMOS in, CMOS 3-state out,	8	52/31
BGW1	50 k Ω pull-up res. I/O buffer, CMOS in, CMOS 3-state out, 5 k Ω pull-up res.	8	52/31
BG02 BGD2	I/O buffer, TTL in, CMOS 3-state out I/O buffer, TTL in, CMOS 3-state out,	8 8	60/34 60/34
BGU2	50 k Ω pull-down res. I/O buffer, TTL in, CMOS 3-state out,	8	60/34
BGW2	50 k Ω pull-up res. I/O buffer, TTL in, CMOS 3-state out, 5 k Ω pull-up res.	8	60/34
BG03 BGD3	I/O buffer, CMOS in, CMOS 3-state out I/O buffer, CMOS in, CMOS 3-state out, 50 k Ω pull-down res.	4 4	48/28 48/28

NEC

Block Name	Description		rea ¹ rids)
	Interface Blocks (Cont.)		
Bi-dire	ctional I/O Buffers (Cont.)		
BGU3	I/O buffer, CMOS in, CMOS 3-state out,	4	48/28
BGW3	50 k Ω pull-up res. I/O buffer, CMOS in, CMOS 3-state out, 5 k Ω pull-up res.	4	56/28
BG04 BGD4	I/O buffer, TTL in, CMOS 3-state out I/O buffer, TTL in, CMOS 3-state out,	4 4	56/31 56/31
BGU4	50 k Ω pull-down res. I/O buffer, TTL in, CMOS 3-state out,	4	56/31
BGW4	50 k Ω pull-up res. I/O buffer, TTL in, CMOS 3-state out, 5 k Ω pull-up res.	4	56/31
BG05 BGD5	I/O buffer, CMOS in, CMOS 3-state out I/O buffer, CMOS in, CMOS 3-state out,	12 12	52/31 52/31
BGU5	50 k Ω pull-down res. I/O buffer, CMOS in, CMOS 3-state out,	12	52/31
BGW5	50 k Ω pull-up res. I/O buffer, CMOS in, CMOS 3-state out, 5 k Ω pull-down res.	12	52/31
BG06 BGD6	I/O buffer, TTL in, CMOS 3-state out I/O buffer, TTL in, CMOS 3-state out,	12 12	60/34 60/34
BGU6	50 k Ω pull-down res. I/O buffer, TTL in, CMOS 3-state out,	12	60/34
BGW6	50 k Ω pull-up res. I/O buffer, TTL in, CMOS 3-state out, 5 k Ω pull-up res.	12	60/34
BG0A BGUA	I/O buffer, TTL in, TTL 3-state out,	6 6	56/30 56/30
BGWA	50 k Ω pull-up res. I/O buffer, TTL in, TTL 3-state out, 5 k Ω pull-up res.	6	56/30
BH01 BHD1	I/O buffer, CMOS Schmitt in, CMOS 3-state out I/O buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	8 8	64/37 64/37
BHU1	$1/0$ buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-up res.	8	64/37
BHW1	$1/0$ buffer, CMOS Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	8	64/37
BH02	I/O buffer, TTL Schmitt in, CMOS 3-state out	8	72/42
BHD2	I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	8	72/42
BHU2	I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-up res.	8	72/42
BHW2	I/O buffer, TTL Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	8	72/42
BH03 BHD3	I/O buffer, CMOS Schmitt in, CMOS 3-state out I/O buffer, CMOS Schmitt in, CMOS 3-state out,	4 4	60/34 60/34
BHU3	50 k Ω pull-down res. I/O buffer, CMOS Schmitt in, CMOS 3-state out,	4	60/34
BHW3	50 k\Omega pull-up res. I/O buffer, CMOS Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	4	60/34

Note (1): Grids shown are for FT/HD types respectively

Block Name	Description		rea ¹ rids)
	Interface Blocks (Cont.)		
Bi-dire	ctional I/O Buffers (Cont.)		
BH04 BHD4	I/O buffer, TTL Schmitt in, CMOS 3-state out I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	4 4	68/39 68/39
BHU4	I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-up res.	4	68/39
BHW4	$1/0$ buffer, TTL Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	4	68/39
BH05 BHD5	I/O buffer, CMOS Schmitt in, CMOS 3-state out I/O buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	12 12	64/37 64/37
BHU5	I/O buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-up res.	12	64/37
BHW5	$1/O$ buffer, CMOS Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	12	64/37
BH06 BHD6	I/O buffer, TTL Schmitt in, CMOS 3-state out I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	12 12	72/42 72/42
BHU6	I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-up res.	12	72/42
BHW6	$1/0$ buffer, TTL Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	12	72/42
BH0A BHUA	I/O buffer, TTL Schmitt in, TTL 3-state out I/O buffer, TTL Schmitt in, TTL 3-state out, $50 \text{ k}\Omega$ pull-up res.	6 6	68/38 68/38
BHWA	I/O buffer, TTL Schmitt in, TTL 3-state out, 5 kΩ pull-up res.	6	68/38
BSI1 BSD1	I/O buffer, CMOS Schmitt in, CMOS 3-state out I/O buffer, CMOS Schmitt in, CMOS 3-state out, $50 \text{ k}\Omega$ pull-down res.	8 8	44/29 44/29
BSU1	I/O buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-up res.	8	44/29
BSW1	I/O buffer, CMOS Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	8	44/29
BSD2	I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	8	52/32
BSI2 BSU2	I/O buffer, TTL Schmitt in, CMOS 3-state out I/O buffer, TTL Schmitt in, CMOS 3-state out,	8 8	52/32 52/32
	50 kΩ pull-up res.	-	
BSW2	I/O buffer, TTL Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	8	52/32
BSD3	I/O buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	4	40/26
BSI3 BSU3	I/O buffer, CMOS Schmitt in, CMOS 3-state out I/O buffer, CMOS Schmitt in, CMOS 3-state out,	4 4	40/26 40/26
BSW3	50 k Ω pull-up res. I/O buffer, CMOS Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	4	40/26

Block Name	Description	Area ¹ (grids)							
	Interface Blocks (Cont.)								
Bi-dire	Bi-directional I/O Buffers (Cont.)								
BSD4	I/O buffer, TTL Schmitt in, CMOS 3-state out 50 k Ω pull-down res.	4	48/29						
BSI4 BSU4	I/O buffer, TTL Schmitt in, CMOS 3-state out I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-up res.	4 4	48/29 48/29						
BSW4	$1/0$ buffer, TTL Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	4	48/29						
BSI5 BSU5	I/O buffer, CMOS Schmitt in, CMOS 3-state out, 12	12 12	44/29 44/29						
BSD5	50 k Ω pull-up res. I/O buffer, CMOS Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	12	44/29						
BSW5	I/O buffer, CMOS Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	12	44/29						
BSI6 BSU6	I/O buffer, TTL Schmitt in, CMOS 3-state out I/O buffer, TTL Schmitt in, CMOS 3-state out,	12 12	52/32 52/32						
BSD6	50 k Ω pull-up res. I/O buffer, TTL Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	12	52/32						
BSW6	I/O buffer, TTL Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	12	52/32						
BSIA BSUA	I/O buffer, TTL Schmitt in, TTL 3-state out I/O buffer, TTL Schmitt in, TTL 3-state out, 50 k Ω pull-up res.	6 6	48/30 48/30						
BSWA	$1/O$ buffer, TTL Schmitt in, TTL 3-state out, 5 k Ω pull-up res.	6	48/30						
or I/o	Buffers								
BJ01 BJD1	OR I/O buffer, CMOS-NOR in, CMOS 3-state out OR I/O buffer, CMOS-NOR in, CMOS 3-state out,	8 8	40/24 40/24						
BJU1	50 k Ω pull-down res. OR I/O buffer, CMOS-NOR in, CMOS 3-state out, 50 k Ω pull-up res.	8	40/24						
BJW1	OR I/O buffer, CMOS-NOR in, CMOS 3-state out, 5 k Ω pull-up res.	8	40/24						
BJ02 BJD2	OR I/O buffer, TTL-NOR in, CMOS 3-state out OR I/O buffer, TTL-NOR in, CMOS 3-state out, 50 k Ω pull-down res.	8 8	40/23 40/23						
BJU2	OR I/O buffer, TTL-NOR in, CMOS 3-state out, $50 \text{ k}\Omega$ pull-up res.	8	40/23						
BJW2	OR I/O buffer, TTL-NOR in, CMOS 3-state out, 5 k Ω pull-up res.	8	40/23						
BJ03 BJD3	OR I/O buffer, CMOS-NOR in, CMOS 3-state out OR I/O buffer, CMOS-NOR in, CMOS 3-state out, 50 k Ω pull-down res.	4 4	36/21 36/21						
BJU3	OR I/O buffer, CMOS-NOR in, CMOS 3-state out, 50 k Ω pull-up res.	4	36/21						
BJW3	OR I/O buffer, CMOS-NOR in, CMOS 3-state out, 5 k Ω pull-up res.	4	36/21						

Block Name	Description								
	Interface Blocks (Cont.)								
OR I/O Buffers (Cont.)									
BJ04 BJD4	OR I/O buffer, TTL-NOR in, CMOS 3-state out OR I/O buffer, TTL-NOR in, CMOS 3-state out, 50 k Ω pull-down res.	4 4	36/20 36/20						
BJU4	OR I/O buffer, TTL-NOR in, CMOS 3-state out, 50 k Ω pull-up res.	4	36/20						
BJW4	OR I/O buffer, TTL-NOR in, CMOS 3-state out, 5 k Ω pull-up res.	4	36/20						
BJ05 BJD5	OR I/O buffer, CMOS-NOR in, CMOS 3-state out OR I/O buffer, CMOS-NOR in, CMOS 3-state out, 50 k Ω pull-down res.	12 12	40/24 40/24						
BJU5	OR I/O buffer, CMOS-NOR in, CMOS 3-state out, 50 k Ω pull-up res.	12	40/24						
BJW5	OR I/O buffer, CMOS-NOR in, CMOS 3-state out, 5 k Ω pull-up res.	12	40/24						
BJ06 BJD6	OR I/O buffer, TTL-NOR in, CMOS 3-state out OR I/O buffer, TTL-NOR in, CMOS 3-state out, 50 k Ω pull-down res.	12 12	40/23 40/23						
BJU6	OR I/O buffer, TTL-NOR in, CMOS 3-state out, 50 k Ω pull-up res.	12	40/23						
BJW6	OR I/O buffer, TTL-NOR in, CMOS 3-state out, 5 k Ω pull-up res.	12	40/23						
BJ0A BJUA	OR I/O buffer, TTL-NOR in, CMOS 3-state out OR I/O buffer, TTL-NOR in, CMOS 3-state out, 50 k Ω pull-up res.	6 6	36/21 36/21						
BJWA	OR I/O buffer, TTL-NOR in, CMOS 3-state out, 5 k Ω pull-up res.	6	36/21						
BK01	OR I/O buffer, CMOS-NOR-Schmitt in, CMOS 3-state out	8	56/34						
BKD1	OR I/O buffer, CMOS-NOR-Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	8	56/34						
BKU1	OR I/O buffer, CMOS-NOR-Schmitt in, CMOS 3-state out, 50 k Ω pull-up res.	8	56/34						
BKW1	OR I/O buffer, CMOS-NOR-Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	8	56/34						
BK02	OR I/O buffer, TTL-NOR-Schmitt in, CMOS 3-state out	8	60/37						
BKD2	OR I/O buffer, TTL-NOR-Schmitt in, CMOS 3-state out, 50 k Ω pull-down res.	8	60/37						
BKU2	OR I/O buffer, TTL-NOR-Schmitt in, CMOS 3-state out, 50 k Ω pull-up res.	8	60/37						
BKW2	OR I/O buffer, TTL-NOR-Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	8	60/37						

Block Name	Description		Area ¹ (grids)		
	Interface Blocks (Cont.)				
or I/O	Buffers (Cont.)				
BK03	OR I/O buffer, CMOS-NOR-Schmitt in, CMOS	4	52/31		
BKD3	3-state out OR I/O buffer, CMOS-NOR-Schmitt in, CMOS	4	52/31		
BKU3	3-state out, 50 k Ω pull-down res. OR I/O buffer, CMOS-NOR-Schmitt in, CMOS	4	52/31		
BKW3	3-state out, 50 k Ω pull-up res. OR I/O buffer, CMOS-NOR-Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	4	52/31		
BK04	OR I/O buffer, TTL-NOR-Schmitt in, CMOS	4	56/34		
BKD4	3-state out OR I/O buffer, TTL-NOR-Schmitt in, CMOS	4	56/34		
BKU4	3-state out, 50 kΩ pull-down res. OR I/O buffer, TTL-NOR-Schmitt in, CMOS	4	56/34		
BKW4	3-state out, 50 k Ω pull-up res. OR I/O buffer, TTL-NOR-Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	4	56/34		
BK05	OR I/O buffer, CMOS-NOR-Schmitt in, CMOS 3-state out	12	56/34		
BKD5	OR I/O buffer, CMOS-NOR-Schmitt in, CMOS 3 -state out, 50 k Ω pull-down res.	12	56/34		
BKU5	OR I/O buffer, CMOS-NOR-Schmitt in, CMOS	12	56/34		
BKW5	3-state out, 50 k Ω pull-up res. OR I/O buffer, CMOS-NOR-Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	12	56/34		
BK06	OR I/O buffer, TTL-NOR-Schmitt in, CMOS	12	60/37		
BKD6	3-state out OR I/O buffer, TTL-NOR-Schmitt in, CMOS	12	60/37		
BKU6	3-state out, 50 k Ω pull-down res. OR I/O buffer, TTL-NOR-Schmitt in, CMOS	12	60/37		
BKW6	3-state out, 50 k Ω pull-up res. OR I/O buffer, TTL-NOR-Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	12	60/37		
BK0A	OR I/O buffer, TTL-NOR-Schmitt in, CMOS	6	56/35		
BKUA	3-state out OR I/O buffer, TTL-NOR-Schmitt in, CMOS	6	56/35		
BKWA	3-state out, 50 k Ω pull-up res. OR I/O buffer, TTL-NOR-Schmitt in, CMOS 3-state out, 5 k Ω pull-up res.	6	56/35		

Note (1): Grids shown are for FT/HD types respectively.

Block Name	Description	Area ¹ (grids)	Block Name	Description	Area ¹ (grids)	
Function Blocks - Normal Power			Function Blocks - Normal Power (Cont)			
Inverters			AND Ga	tes		
F101	Inverter ($F/O = 25$) (FT)	4/3	F312	2-input AND	8/5	
F102	Inverter $(F/O = 25)$ (FT)	8/5	F313	3-input AND	12/6	
F103SD	Inverter (x3)	-/1	F314	4-input AND	12/7	
F104SD	Inverter (x4)		F315	5-input AND	-/8	
F108SD	Inverter (x5)					
D ((F316	6-input AND	-/9	
Buffers			F332	2-input AND, power	12/7	
F111	Non-inverting buffer (F/O = 25) (FT)	8/5	F333	3-input AND, power	16/8 16/9	
F112	Non-inverting buffer $(F/O = 51)$ (FT)	12/7	F334	4-input AND, power	10/9	
F113SD	Non-inverting buffer	-/9	AND-NOR Gates			
F114SD	Non-inverting buffer		F421	2-wide 1-2-input AND-OR inverter	12/7	
F118SD	Non-inverting buffer		F422	3-wide 1-1-2-input AND-OR inverter	16/10	
			F423	2-wide 1-3-input AND-OR inverter	16/9	
Delays			F424	2-wide 2-2-input AND-OR inverter	16/9	
F131	Delay gate	24/13		•		
F132	Delay gate	40/22	F425	3-wide 2-2-2-input AND-OR inverter	24/14	
			F426	2-wide 3-3-input AND-OR inverter	24/13	
NOR Gate	is.		F429	4-wide 2-2-2-input AND-OR inverter	32/18	
		o /=	F442	2-wide 4-4 input AND-OR inverter	32/17	
F202	2-input NOR	8/5	F462	3-wide 1-2-3 input AND-OR inverter	24/14	
F203	3-input NOR	12/7				
F204	4-input NOR	16/10	OR-NAN	ID Gates		
F205	5-input NOR	-/11	F431	2-wide 1-2-input OR-AND inverter	12/7	
F206	6-input NOR	-/12	F432	3-wide 1-1-2-input OR-AND inverter	16/10	
F208	8-input NOR	24/18	F433	2-wide 1-3-input OR-AND inverter	16/9	
F222	2-input NOR, power	16/9	F434	2-wide 2-2-input OR-AND inverter	16/9	
F223	3-input NOR, power	24/13		·		
			F435	2-wide 2-3-input OR-AND inverter	20/11	
F224	4-input NOR, power	32/17	F436	2-wide 3-3-input OR-AND inverter	24/13	
			F454	4-wide 2-2-2-2-input OR-AND inverter	32/18	
OR Gates			Barity C	enerators		
F212	2-input OR	8/5	Failty G	enerators		
F213	3-input OR	12/6	F581	8-bit odd parity generator	76/48	
F214	4-input OR	12/7	F582	8-bit even parity generator	76/48	
F215	5-input OR	-/8				
		10	EX-OR C	Gate		
F216	6-input OR	-/9	F511	Exclusive-OR	16/9	
F232	2-input OR, power	12/7				
F233	3-input OR, power	16/8 16/0	EX-NOR	Gate		
F234	4-input OR, power	16/9	F512	Exclusive-NOR	16/9	
NAND Ga	tes		F312	EXClusive-NOR	10/9	
F302	2-input NAND	8/5	Adders			
F303	3-input NAND	12/7				
F304	4-input NAND	16/9	F521	1-bit full-adder	36/24	
F305	5-input NAND	20/11	F523	4-bit binary full-adder	128/89	
			Duffor			
F306 F308	6-input NAND 8-input NAND	20/12 24/14	Buffers			
F308 F322	2-input NAND, power	24/14 16/9	F531	3-state buffer with Enable	20/11	
F322 F323	3-input NAND, power	24/13	F532	3-state buffer with Enable low	20/11	
			F533	3-state buffer	36/14	
F324	4-input NAND, power	32/17	Deceder			
			Decodel	Decoders		
			F561	2-to-4 decoder	40/24	
			F981	2-to-4 decoder with Enable low	52/31	
			F982	3-to-8 decoder with Enable low	104/60	

F982

3-to-8 decoder with Enable low

104/60

Block Name	Description	Area ¹ (grids)	Block Name	Description	Area ¹ (grids)	
	Function Blocks - Normal Power (Cont.)			Function Blocks - Normal Power (Cont.)		
Shift Registers			Flip-Flops (Cont.)			
F911	4-bit shift register with Reset	136/75	F781	J-K F/F C low, buffered	40/24	
F912	4-bit serial/parallel shift register	144/80	F787	J-K F/F C low with Set-Reset low, buffered	48/30	
F913	4-bit parallel shift register with Reset low, Load	160/92	F791	Toggle F/F with Set-Reset and Toggle Enable	48/30	
F914	4-bit shift register	112/61	F792	Toggle low F/F with Set-Reset and Toggle	48/30	
Multiplexers				Enable low		
F565	2-to-1 multiplexer (no enable/high drive)	-/9	F922	4-bit D-F/F with Reset	136/75	
F564	4-to-1 multiplexer (no enable/high drive)	-/18	F924	4-bit D-F/F	112/61	
F563	8-to-1 multiplexer (no enable/high drive)	-/33	F615	D-F/F with RB	-/21	
L655	2-to-1 multiplexer (no enable/low drive)	-/7	F616	D-F/F with SB	-/22	
F569	8-to-1 multiplexer	72/46	F651	D-F/F with 2-to-1 Data Selector	-/23	
F570	4-to-1 multiplexer	36/27	F655	D-F/F with 2-to-1 Data Selector and RB	-/29	
F571	2-to-1 multiplexer	20/16	F656	D-F/F with 2-to-1 Data Selector and SB	-/30	
F572	Quad 2-to-1 multiplexer	76/35	S999	2-to-1 Data Slector (Scan path)	-/10	
Latches			S002	D-F/F (Scan path)	-/7	
FFOF	D. O. Latak	00/44	S004	D-F/F with RB (Scan path)	-/28	
F595 F601	R-S latch	20/14 24/14	S005	D-F/F with SB (Scan path)	-/29	
F601 F602	D-latch D-latch with Reset	24/14	S052	D-F/F with Hold (Scan path)	-/25	
F602 F603	D-latch with Reset low	24/15	Countors			
F604	D-latch with G driver low	24/14	Counters			
F605	D-latch with G low, Reset low	28/16	F961	4-bit synchronous binary counter with	240/158	
F901	4-bit D-latch	80/45	5000	Reset low, buffered	450/400	
F902	8-bit D-latch	152/85	F962	4-bit synchronous binary up counter with Reset low	152/102	
Flip-Flop	0S		Compara	tor		
F596	Synchronous R-S F/F with Set-Reset	44/28	F985	4-bit magnitude comparator	128/82	
F611	D-F/F	32/18	1.902	4-bit magnitude comparator	120/02	
F614	D-F/F with Set-Reset	40/24	Oscillato	r Blocks		
F617	D-F/F with Set-Reset low	40/24				
F631	D-F/F C low	32/18	OSCB1	(32 KHz typ)	TBA	
F637	D-F/F C low with Set-Reset low	40/24	OSCB2	(2 MHz typ)	TBA	
F641	D-F/F, buffered	32/22	OSCB3	(4 MHz typ)	TBA	
F644	D-F/F with Set-Reset, buffered	40/28	OSCB4	(8 MHz typ)	TBA	
	,		OSCB5	(16 MHz typ)	TBA	
F647	D-F/F with Set-Reset low, buffered	40/28	OSCB6	(32 MHz typ, 50 MHz max)	TBA	
	D-F/F C low, buffered	32/22				
F661		40/28	Miscellar	ieous		
F667	D-F/F C low with Set-Reset low, buffered	26/22				
F667 F714	Toggle F/F with Set-Reset	36/23	F091	H, L level Generator		
F667 F714 F717	Toggle F/F with Set-Reset Toggle F/F with Set-Reset low	36/23	F091	H, L level Generator		
F667 F714 F717 F737	Toggle F/F with Set-Reset Toggle F/F with Set-Reset low Toggle low F/F with Set-Reset low	36/23 36/23	F091 Clock Dr i			
F667 F714 F717 F737 F744	Toggle F/F with Set-Reset Toggle F/F with Set-Reset low Toggle low F/F with Set-Reset low Toggle F/F with Set-Reset, buffered	36/23 36/23 36/27				
F667 F714 F717 F737 F744	Toggle F/F with Set-Reset Toggle F/F with Set-Reset low Toggle low F/F with Set-Reset low	36/23 36/23			-/228	
F667 F714 F717 F737 F744 F747	Toggle F/F with Set-Reset Toggle F/F with Set-Reset low Toggle low F/F with Set-Reset low Toggle F/F with Set-Reset, buffered Toggle F/F with Set-Reset low, buffered	36/23 36/23 36/27 36/27	Clock Dri	vers	-/228 -/540	
F667 F714 F717 F737 F744 F747 F767	Toggle F/F with Set-Reset Toggle F/F with Set-Reset low Toggle low F/F with Set-Reset low Toggle F/F with Set-Reset, buffered Toggle F/F with Set-Reset low, buffered Toggle low F/F with Set-Reset low, buffered	36/23 36/23 36/27 36/27 36/27	Clock Dr i FCK1	vers Clock driver (x1)		
F667 F714 F717 F737 F744 F747	Toggle F/F with Set-Reset Toggle F/F with Set-Reset low Toggle low F/F with Set-Reset low Toggle F/F with Set-Reset, buffered Toggle F/F with Set-Reset low, buffered	36/23 36/23 36/27 36/27	Clock Dr i FCK1 FCK2	Vers Clock driver (x1) Clock driver (x2)	-/540	

Note (1): Grids shown are for FT/HD types respectively.

Block Name	Description	Area ¹ (grids)
	Function Blocks - Low Power	
Inverters	5	
L101	(F/O = 25) (FT)	4/2
Buffers		
L111	Non-inverting buffer (F/O = 25) (FT)	4/3
NOR Ga	tes	
L202	2-input NOR	4/3
_203	3-input NOR	8/4
204	4-input NOR	8/5
OR Gate	s	
_212	2-input OR	8/4
.213	3-input OR	8/5
.214	4-input OR	12/6
NAND G	ates	
_302	2-Input NAND	4/3
.303	3-Input NAND	8/4
304	4-Input NAND	8/5
305	5-Input NAND	12/6
306	6-Input NAND	8/7
ND Gat	es	
312	2-Input AND	8/4
313	3-Input AND	8/5
314	4-Input AND	12/6
ND-NO	R Gates	
421	2-Wide, 1-2-Input AND-OR Inverter	8/4
422	3-Wide 1-1-2-Input AND-OR Inverter	8/5
.423	2-Wide, 1-3-Input AND-OR Inverter	8/5
424	2-Wide, 2-2-Input AND-OR Inverter	8/5
425	3-Wide, 2-2-2-Input AND-OR Inverter	12/8
.426 .429	2-Wide, 3-3-Input AND-OR Inverter 4-Wide, 2-2-2-Input AND-OR Inverter	12/7 16/10
.429 .442	2-Wide, 4-4-Input AND-OR Inverter	12/9
462	3-Wide, 1-2-3-Input AND-OR Inverter	12/8
	D Gates	
		0/1
.431 .432	2-Wide, 1-2-Input OR-AND Inverter 3-Wide, 1-1-2-Input OR-AND Inverter	8/4 8/5
433	2-Wide, 1-3-Input OR-AND Inverter	8/5
OR-AND	Gates	
434	2-Wide, 2-2-Input OR-AND Inverter	8/5
_435	2-Wide, 2-3-Input OR-AND Inverter	12/6
_436	2-Wide, 3-3-Input OR-AND Inverter	12/7
_454	4-Wide, 2-2-2-2-Input OR-AND Inverter	16/10

Description	Area ¹ (grids)
Function Blocks - Low Power (Cont.))
OR	
EX-OR	12/8
NOR	
EX-NOR	12/8
2-to-4 Decoder	24/17
2-to-4 Decoder with Enable	68/42
3-to-8 Decoder with Enable	68/42
r	
2-to-1 Multiplexer	16/10
Quad 2-to-1 Multiplexer	40/27
4-Bit Latch	48/33
8-Bit Latch	88/61
sters	
4-Bit Shift Register with Reset	104/60
4-Bit Serial/Parallel Shift Register	112/60
4-Bit Parallel in Shift Register with Reset Low	128/80
4-Bit D-F/F with Reset	104/63
4-Bit D-F/F	80/49
tions	
V20HL 8-bit Microprocessor	73,367
•	73,367
•	104,910 40,300
	31,700/6848
	78,600
765 Floppy Disk Controller	78,580
8237A Programmable DMA Controller	31,780
8251A USART	17,750
8254 Interval Timer	13,549
	0 5 1 0
8255A Peripheral Interface	9,540 5,800
	9,540 5,800 20,495
	Function Blocks - Low Power (Cont.) OR EX-OR NOR EX-NOR 2-to-4 Decoder 2-to-4 Decoder with Enable 3-to-8 Decoder with Enable 3-to-8 Decoder with Enable r 2-to-1 Multiplexer Quad 2-to-1 Multiplexer 4-Bit Latch 8-Bit Latch 8-Bit Latch 8-Bit Shift Register with Reset 4-Bit Shift Register with Reset 4-Bit Serial/Parallel Shift Register 4-Bit D-F/F with Reset 4-Bit D-F/F wi

 1 Grid sizes based on hard megamacro, others are soft 2 80C42H with/without internal ROM program memory

Publications

This data sheet contains preliminary specifications, package information, and operational data for the CB-C7 cellbased CMOS ASIC. Additional design information is available in NEC's CB-C7 Block Library and CB-C7 Design Manual. Contact your local NEC ASIC Design Center or the NEC Literature Center for availability and further ASIC design information; see the back of this data sheet for locations and phone numbers.

Notes:

NEC ASIC DESIGN CENTERS

WEST

401 Ellis Street
 P.O. Box 7241
 Mountain View, CA 94039

TEL 415-965-6533 FAX 415-965-6788

 One Embassy Centre 9020 S.W. Washington Square Road, Suite 400 Tigard, OR 97223

TEL 503-671-0177 FAX 503-643-5911

SOUTH CENTRAL/SOUTHEAST

16475 Dallas Parkway, Suite 380
 Dallas, TX 75248

TEL 972-250-4522 FAX 972-931-8680

- Research Triangle Park
 2000 Regency Parkway, Suite 455
 Cary, NC 27511
 - TEL 919-460-1890 FAX 919-469-5926

NORTH CENTRAL/NORTHEAST

 One Natick Executive Park Natick, MA 01760

TEL 508-655-8833 FAX 508-653-2915

- Greenspoint Tower 2800 W. Higgins Road, Suite 765 Hoffman Estates, IL 60195
 - TEL 708-519-3945 FAX 708-882-7564

THIRD-PARTY DESIGN CENTERS

SOUTH CENTRAL/SOUTHEAST

 Koos Technical Services, Inc. 385 Commerce Way, Suite 101 Longwood, FL 32750

TEL 407-260-8727 FAX 407-260-6227

 Integrated Silicon Systems Inc. 2222 Chapel Hill Nelson Highway Durham, NC 27713

TEL 919-361-5814 FAX 919-361-2019

2880 Scott Boulevard P.O. Box 58062 Santa Clara, CA 95052 TEL 408-588-6000 For literature, call toll-free 7 a.m. to 6 p.m. Pacific time:

1-800-366-9782

or FAX your request to: 1-800-729-9288

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. ALL DEVICES SOLD BY NECEL ARE COVERED BY THE PROVISIONS APPEARING IN NECEL TERMS AND CONDITIONS OF SALES ONLY. INCLUDING THE LIMITATION OF LIABILITY, WARRANTY, AND PATENT PROVISIONS. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. "Standard" quality grade devices are recommended for computers, office equipment, comsunication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic control systems, anti-disaster and anti-crime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliabilty requirements for any such application and any cost adder. NECEL does not recommend or approve use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL devices in applications not intended by NECEL, customer must contact the responsible NECEL sales people to determine NECEL's willingness to support a given application.