

UM971800200 11-1

1

U

SER

’

S

 M

ANUAL

C

HAPTER

 11

Z80185 B

IDIRECTIONAL

 C

ENTRONICS

P1284 C

ONTROLLER

11.1 INTRODUCTION

The Centronics P1284 Controller can operate in either the
Host or Peripheral role in Compatibility mode (host to print-
er), Nibble or Byte mode (printer to host), and ECP mode
(bidirectional). It provides no hardware support for the EPP
mode, although it may be possible to implement this mode
by software.

Nine control signals have dedicated hardware pins, and
have

±

12 mA drive (P1284 Level 2) capability as does the
8-bit data port PIA27-20.

Note:

 Signal names listed below
are those for the original Compatible mode. The names
shown in parentheses represent the same signal, but in a
more recent mode. The Z80185 does not include hardware
support for the P1284 EPP mode.

The following signals are outputs in a Peripheral mode, in-
puts in a Host mode:

■

Busy (PtrBusy, PeriphAck)

■

nAck (PtrClk, PeriphClk)

■

PError (AckDataReq, nAckReverse)

■

nFault (nDataAvail, nPeriphRequest)

■

Select (Xflag)

The following signals are inputs in a Peripheral mode, out-
puts in a Host mode:

■

nStrobe (HostClk)

■

nAutoFd (HostBusy, HostAck)

■

nSelectIn (P1284Active)

■

nInit (nReverseRequest)

Note that, because the Host/Peripheral mode is fully con-
trolled by software, a Z80185-based product can operate
as a Host in one system, or as a Peripheral in another,
without any change to the hardware. A Z80185-based
product could even act as a Host at one time and a Periph-
eral at another time within the same system, if there is a
mechanism to control such alternate use.

In general, the interface architecture automates operations
that are seen as performance-critical, while leaving less
frequent operations to software control. To achieve top
performance, software should assign a DMA channel to
the current direction of data flow.

Note:

The IEEE 1284 Interface should be used with
the/IOC bit (bit D5) in the OMCR set to 0. The setting of this
bit primarily affects RLE expansion in peripheral ECP
forward and host ECP reverse modes.

Z80185/195

Zilog User’s Manual

UM971800200 11-2

11.2 BIDIRECTIONAL CENTRONICS REGISTERS

Reading the Parallel Controls (PARC) register allows soft-
ware to sense the state of the input signals per the current
mode, plus two or three status flags:

The controller sets IllOp (Illegal Operation) when it detects
an error in the protocol, for example, if it’s in Peripheral
mode and it detects that the host has driven P1284Active
(nSelectIn) Low at a time that mandates an immediate
Abort, that is, outside one of the “windows” in which this
event indicates an organized disengagement. If “status in-
terrupts” are enabled, such an interrupt is always request-
ed when IllOp is set. Writing PARM with NewMode=1
clears IllOp.

DREQ is the Request presented to the DMA channels,
which may or may not be programmed to service this re-
quest. If not, an interrupt can be enabled when DREQ is
set.

Writing to PARC allows the software to set and clear the
output signals per the current mode:

Figure 11-1. Reading PARC in a Host Mode

(I/O Address %DA)

Figure 11-2. Reading PARC in a Peripheral Mode

(I/O Address %DA)

Busy PError Select nFault nAck IllOp DREQ Idle

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

nAutoFd nStrobe nSlctIn nInit IllOp DREQ Idle

Figure 11-3. Writing to PARC in a Host Mode

(I/O Address %DA)

Figure 11-4. Writing to PARC in a Peripheral Mode

(I/O Address %DA)

7 6 5 4 3 2 1 0

1=drive
nAutoFd

High

1=drive
nStrobe

High

1=drive
nSelctIn

High

1=drive
nInit
High

1=drive
nAutoFd

Low

1=drive
nStrobe

Low

1=drive
nSelctIn

Low

1=drive
nInit
Low

7 6 5 4 3 2 1 0

1=drive
Busy
High

1=drive
PError
High

1=drive
Select
High

1=drive
nFault
High

1=drive
Busy
Low

1=drive
PError
Low

1=drive
Select
Low

1=drive
nFault
Low

Z80185/195

Zilog User’s Manual

UM971800200 11-3

1

Because there are five outputs in a Peripheral mode, an-
other register, called PARC2, allows software to change
the nAck line, rather than the Select line:

The Parallel mode register (PARM) includes the basic
mode control of the controller:

NewMode = 1

 reinitializes the state machine to the initial
state for the mode called out by MODE. Never change
MODE without writing a 1 in this bit.

IdleIE = 1

 enables interrupts when the controller sets the
Idle flag. When software uses a DMA channel to provide
data to the P1284 controller, it can be expected that the
channel will do so in a timely manner, and thus, that an Idle
condition signifies that the channel has finished transfer-
ring the block. (Software can also enable an interrupt from
the DMA channel, but on the transmit side, such interrupts
are not well-synchronized to events on the P1284 control-
ler.) Conversely, if software provides data, Idle may not be
grounds for an interrupt.

Some modes set the Idle flag when they are entered. How-
ever, such a setting of Idle never requests an interrupt.

StatIE = 1

 enables “status” interrupts that are described
separately for each mode.

DREQIE = 1

 enables interrupts when the controller sets
DREQ, except that in those modes that set DREQ when
they are entered, such setting doesn’t request an interrupt.

Figure 11-5. Writing to PARC2 in a Peripheral Mode

(I/O Address %DB)

7 6 5 4 3 2 1 0

1=drive
Busy
High

1=drive
PError
High

1=drive
nAck
High

1=drive
nFault
High

1=drive
Busy
Low

1=drive
PError
Low

1=drive
nAck
Low

1=drive
nFault
Low

Figure 11-6. PARM

(I/O Address %D9)

7 6 5 4 3 2 1 0

NewMode IdleIE StatIE DREQIE Mode

Z80185/195

User’s Manual Zilog

11-4 UM971800200

A second output register has been added for PIA27-20.
Writing to either the Z80181-compatible PIA 2 Data Regis-
ter (address E3) or the new Alternate PIA 2 Data Register
(address EE) writes to the Output Holding Register (OHR).
When the PIA27-20 pins are outputs, the outputs of the
OHR are the inputs to the second register, which is called
the I/O register (IOR), these outputs drive the PIA27-20
pins. When the pins are inputs, they are the inputs to the
IOR, which can be read from the PIA 2 Data Register (ad-
dress E3).

In non-P1284 mode, Host Negotiation mode, Reserved
Modes, and in Peripheral Compatible/Negotiation mode
when the host drives nSelectIn (P1284Active) High to se-
lect negotiation, the direction of the PIA27-20 pins are con-
trolled by the PIA 2 Data Direction register, as on the
Z80181. Also in these modes the IOR is loaded on every
PHI clock, so that operation is virtually identical to the
Z80181. In other modes the controller controls the direc-
tion of PIA27-20 and when the IOR is loaded.

A Time Constant Register PART must be loaded by soft-
ware with the smallest number of PHI clocks that equals or
exceeds the “critical time” for the mode selected in PARM.
The critical time is 750 ns for Host Compatible mode, 500
ns for most other modes, and the time necessary to indi-
cate DMA completion in Host ECP Forward and Peripheral
ECP Reverse modes.

Table 11-1. Bidirectional Centronics Mode Selection

MODE

0000 Non-P1284 mode
0001 Peripheral Compatible/Negotiation mode
0010 Peripheral Nibble mode
0011 Peripheral Byte mode
0100 Peripheral ECP Reverse mode
0101 Peripheral Inactive mode
0110 Peripheral ECP Forward mode with

software RLE handling
0111 Peripheral ECP Forward mode with

hardware RLE expansion
1000 Host Negotiation mode
1001 Host Compatible mode
1010 Host Nibble mode
1011 Host Byte mode
1100 Host ECP Forward mode
1101 Host Reserved mode
1110 Host ECP Reverse mode with software

RLE handling
1111 Host ECP Reverse mode with hardware

RLE expansion

Figure 11-7. PART Write

(I/O Address %DC)

7 6 5 4 3 2 1 0

clr IP clr IUS number of PHI clocks in critical timeSet IUS

Z80185/195

Zilog User’s Manual

UM971800200 11-5

1

Reading PART yields the status of the IP and IUS bits,
which are described in the Bidirectional Centronics Inter-
face section:

The Vector Register PARV must be loaded by software
with the interrupt vector to be used for interrupts from this
controller.

Figure 11-8. PART Read

 (I/O Address %DC)

7 6 5 4 3 2 1 0

IUS IP 0 number of PHI clocks in critical time

Figure 11-9. PARV

 (I/O Address %DD)

7 6 5 4 3 2 1 0

Interrupt Vector

Z80185/195

User’s Manual Zilog

11-6 UM971800200

Figure 11-10. Bidirectional Centronics P1284
Controller Functional Block Diagram

PARM
Register

State
Machine

State
Counter

Data Path
Clocking

PARC, PARC2
Registers

RLE
Counter

Time
Counter

PART
Register PARV

Register

Interrupt
Logic

Internal Data Bus

Host/Peripheral
Control Signal
Management

IEI

IEO

Output Holding
Register

PIA2 Data
Register

Data Path
Direction

PIA2 Direction
Register

PIA27-20

nAck
Busy
PError
Select
nFault

nAutoFd
nStrobe
nSelectIn
nInit

Z80185/195

Zilog User’s Manual

UM971800200 11-7

1

11.2.1 Interrupts

As in other Zilog peripherals, the controller includes an in-
terrupt pending bit (IP), and an interrupt under service bit
(IUS). The controller is part of an on-chip interrupt ac-
knowledge daisy-chain that extends from the IEI pin,
through the EMSCC, CTC, and this controller in a pro-
grammable priority order, and from the lowest-priority of
these devices to the IEO pin. The interrupt request from
the controller is logically ORed with /INT0 and other on-
chip interrupt requests to the processor.

The controller sets its IP bit whenever any of three condi-
tions occurs:

PARM4 is 1, and the controller sets the DREQ bit. This
does not include when the controller forces the DREQ bit
to 1, when software first places the controller in Peripheral
Nibble, Peripheral Byte, Peripheral ECP Reverse, Host
Compatible, or Host ECP Forward mode.

PARM5 is 1, and a mode-dependent “status interrupt” con-
dition occurs. The following sections describe the status
interrupt conditions (if any) for each mode.

PARM6 is 1, and the controller sets the Idle bit, except
when the controller forces the Idle bit to 1, when software
first places the controller in Peripheral Nibble, Peripheral
Byte, Peripheral ECP Reverse, Host Compatible, or Host
ECP Forward mode. The following sections describe when
Idle is set in each mode.

Once IP is set, it remains set until software writes a 1 to
PART6.

The controller will begin requesting an interrupt of the pro-
cessor whenever IP is set, its IEI signal from the on-chip
daisy-chain is High/true, and its IUS bit is 0. Once it starts
requesting an interrupt, the controller will continue to do so
until /IORQ goes Low in an interrupt-acknowledge cycle,
or IP is 0, or IUS is 1.

The controller drives its IEO output High, if its IEI input is
High, and its IP and IUS bits are both 0. A Z80 interrupt ac-
knowledge cycle is signalled by /M1 going Low, followed
by /IORQ going Low. The controller, and all other devices
in the daisy-chain, freeze the contribution of their IP bits to
their IEO outputs while /M1 is Low, which prevents new
events from affecting the daisy-chain. By the time/IORQ
goes Low, one and only one device will have its IEI pin
High and its IEO pin Low — this device responds to the in-
terrupt by providing an interrupt vector, and setting its IUS
bit. This controller also clears its IP bit when it responds to
an interrupt acknowledge cycle.

The interrupt service routine, that is initiated when the in-
terrupt vector value identifies an interrupt from this control-
ler, should save the processor context and then proceed
as follows:

If the ISR does not allow nested interrupts, it can clear the
IP and IUS bits by writing hex 60, plus the “critical time”
value to the PART, then read the status from PARC and
proceed based on that status. Near the end of the ISR it
should re-enable processor interrupts.

If the ISR allows nested interrupts, it can re-enable proces-
sor interrupts, clear IP by writing hex 40 plus the “critical
time” value to the PART, and then read the status from
PARC and proceed based on that status. At the end of the
ISR it should clear IUS to allow further interrupts from this
controller and devices lower on the daisy-chain, by writing
hex 20 plus the “critical time” value to the PART.

11.2.2 Operating Modes

The remainder of this section describes the operation of
the various PARM register modes that can be selected.

11.2.3 Non-P1284 Mode

The Z80185 defaults to this mode after a Reset, and this
mode is compatible with the use of PIA27-20 on the
Z80181. The directions of PIA27-20 can be controlled indi-
vidually by writing to register E2, as on the Z80181. The
state of outputs among PIA27-20 can be set by writing to
register E3, and the state of all eight pins can be sensed
by reading register E3. The Busy, nAck, PError, nFault,
and Select pins are tri-stated in this mode, while nStrobe,
nAutoFd, nSelectIn, and nInit are inputs. There are no sta-
tus interrupts in this mode.

11.2.4 Peripheral Inactive Mode

This mode operates identically to Non-P1284 mode as de-
scribed above, except that the Busy, nAck, PError, nFault,
and Select pins are outputs that can be controlled via the
PARC and PARC2 registers, and status interrupts can oc-
cur in response to any edge on nAutoFd, nStrobe, nSelec-
tIn, or nInit. This mode differs from Peripheral Compatibil-
ity/Negotiation mode with nSelectIn (P1284 Active) High,
only in that the controller will not operate in Compatibility
mode if nSelectIn goes Low.

Z80185/195

User’s Manual Zilog

11-8 UM971800200

11.2.5 Host Compatible Mode

1. Setting this mode configures PIA27-20 as outputs
regardless of the contents of register E2. When
entering this mode, the controller sets the Idle and
DREQ bits, but these settings do not request an
interrupt.

2. If software, or a DMA channel, writes eight bits to the
Output Holding Register (OHR) when Idle is set, the
controller transfers the byte to the Input/Output
Register and negates DREQ only momentarily, so as
to request another byte from software or the DMA
channel.

3. In this mode, the nAutoFd line is not under control of
the PARC register, but rather under control of which
register the software uses to write data to the OHR.
Each time the controller transfers a byte from the OHR
to the Input/Output Register, it sets nAutoFd High if the
byte was written to address E3, and Low if the byte
was written to the “alternate” address EE. In a DMA
application all of the bytes transferred from one output
buffer will have the same state of nAutoFd, but this
state can be changed from one buffer to the next by
changing theI/O address used by the DMA channel. In
non-DMA applications software can set the state of
nAutoFd for each character, by writing data to the two
different register addresses.

4. When a data byte has been valid on PIA27-20 for 750
ns (as controlled by the PART register), and the Busy
and PError lines are Low and the Select, nAck, and
nFault lines are High, the controller drives nStrobe
Low. After the controller has held nStrobe Low for 750
ns it drives nStrobe back to High. Then it waits for 750
ns of data hold time to elapse. If software or a DMA
channel has written another byte to the Output Holding
Register (thus clearing DREQ) by the time this wait is
satisfied, the controller transfers the byte from the
Output Holding Register to the Input/Output Register,
sets DREQ again, and returns to the event sequence
at the start of this paragraph. Otherwise, it sets Idle
and returns to the event sequence at the start of
paragraph #2.

Status interrupts in this mode include rising and falling
edges on PError, nFault, and Select.

11.2.6 Host Negotiation Mode

Setting this mode puts PIA27-20 under control of registers
E2 and E3, as on the Z80181.

Software has complete control of the controller, and can ei-
ther revert to Host Compatibility mode, or set one of the fol-
lowing Host modes, depending on how the peripheral re-
sponds to the Negotiation value(s).

Status interrupts in this mode include rising and falling
edges on PtrClk (nAck), nAckReverse (PError), and
nPeriphRequest (nFault). nFault is not used during actual
P1284 negotiation, but is included because these events
are significant during Byte and ECP mode idle times.

11.2.7 Host Reserved Mode

This mode differs from Host Negotiation mode only in that
there are no status interrupts in this mode.

11.2.8 Peripheral Compatible/Negotiation
Mode

In this mode, if P1284Active (nSelectIn) is Low, the con-
troller sets PIA27-20 as inputs, regardless of the contents
of register E2; when P1284Active (nSelectIn) is High,
PIA27-20 are under the control of registers E2 and E3. On
entry to this mode, the controller sets the Idle bit, if DREQ
is set from a previous mode.

If, in this mode, nStrobe goes (is) Low, P1284Active (nSe-
lectIn) is Low, and DREQ is 0, indicating that any previous
data has been taken by the processor or DMA channel, the
controller captures the data on PIA27-20 into the In-
put/Output Register, sets DREQ to notify software or the
DMA channel to take the byte, drives the Busy line High,
and one PHI clock later drives nAck Low. When at least
500 ns (as controlled by the PART register) have elapsed,
the controller drives nAck back to High. One PHI clock lat-
er, if the CPU or DMA has taken the data and thus cleared
DREQ, the controller drives Busy back to Low, otherwise
it sets Idle.

Select, PError and nFault are under software control in this
mode, and nAutoFd can be sensed by software, but has no
other effect on operation.

Z80185/195

Zilog User’s Manual

UM971800200 11-9

1

In this mode, software should monitor for the condition
P1284Active (nSelectIn) High, and nAutoFd Low simulta-
neously. If software detects this state, it should participate
in a Negotiation process. Software should read the value
on PIA27-20 and set PError, nFault, XFlag, and nAck as
appropriate for the data value. As long as P1284Active
(nSelectIn) remains High in this mode, software is in com-
plete control of the controller. After the host has driven
nStrobe Low and then High again for an acceptable value,
software should reprogram the MODE field to the appropri-
ate one of the following Peripheral modes.

Status interrupts in this mode include rising and falling
edges on P1284Active (nSelectIn) and nInit, and rising
and falling edges on HostBusy (nAutoFd) and HostClk
(nStrobe) while P1284Active (nSelectIn) is High.

11.2.9 Host Nibble Mode

1. If, during Host Negotiation mode, software has placed
the value 00 or 04 on the data lines, and received a
positive response on Xflag (Select) and a Low on
nDataAvail (nFault) at a rising edge of PtrClk (nAck),
then after optionally programming a DMA channel to
store data, it should set this mode.

2. For each byte in this mode, the controller drives
HostBusy (nAutoFd) Low and waits until DREQ is
cleared, indicating that the CPU or DMA has taken any
previous data, and the peripheral has driven PtrClk
(nAck) Low. At this point it samples the other four
status lines from the peripheral into the less-significant
four bits of the Input/Output Register as follows:

The controller then drives HostBusy (nAutoFd) back to
High, and waits for the peripheral to drive PtrClk
(nAck) back to High. Then it drives HostBusy
(nAutoFd) back to Low and waits for the peripheral to
drive PtrClk (nAck) Low. At this point it samples the
four status lines from the peripheral into the most-
significant four bits of the Input/Output Register, as
shown above. Then it drives HostBusy (nAutoFd) back
to High, sets the DREQ bit, and waits for the peripheral
to drive PtrClk (nAck) back to High. When this occurs,
if the peripheral is driving nDataAvail (nFault) Low,
indicating more data is available, the controller then
returns to the event sequence at the start of paragraph
#2.

3. If nDataAvail (nFault) is High at a rising edge of nAck
in this mode, indicating that the peripheral has no
more data, the controller sets Idle and waits for
software to program it back to Host Negotiation mode.
Software can then select the next mode (reference
IEEE P1284 specification).

If host software is programmed not to select all the data
that a peripheral has available, it should first disable the
DMA channel, if one is in use, then wait for DREQ to be 1
and PtrClk (nAck) to be High. If nDataAvail (nFault) is Low
at this point, the controller will have already driven Host-
Busy (nAutoFd) Low to solicit the next byte. Software
should then program the controller back to Host Negotia-
tion mode, read the IOR to get the current byte, and take
the next byte from the peripheral under software control.
After the peripheral drives nAck High after the second nib-
ble, software can drive P1284Active (nSelectIn) Low to tell
the peripheral to leave Nibble mode.

There are no status interrupts in Host Nibble mode.

Table 11-2. Nibble Mode Bit Assignments

Signal First Data Bit Second Data Bit

Busy 3 7
PError 2 6
Select 1 5
nFault 0 4

Z80185/195

User’s Manual Zilog

11-10 UM971800200

11.2.10 Peripheral Nibble Mode

1. Software shouldn’t set this mode until there is reverse
data available to send. In other words, it should
implement the P1284 “reverse idle mode” via software
in Peripheral Compatibility/Negotiation mode. After
software has driven nDataAvail (nFault), AckDataReq
(PError), and Xflag (Select) all Low to signify that data
is available, then driven PtrClk (nAck) High after 500
ns, and if requested programmed a DMA channel to
provide data to send, when it sees HostBusy
(nAutoFd) Low to request data, software should set
this mode.

Setting this mode sets DREQ and Idle, but these settings
do not request an interrupt. The PIA27-20 pins remain con-
figured for data input but are not used. Instead, four of the
five control outputs are driven with the LS and MS four bits
of the Input/Output Register, as shown in Table 11-2, while
PtrClk (nAck) serves as a handshake/clock output. On en-
tering this mode the hardware begins routing bits 3-0 of the
IOR to these lines.

2. If software, or a DMA channel, writes a byte to the
Output Holding Register when Idle is set, the controller
immediately transfers the byte to the IOR and clears
Idle, and negates DREQ only momentarily to request
another byte from software or the DMA channel.

3. After data has been valid on the four control outputs
for 500 ns (as controlled by the PART register), the
controller drives the PtrClk (nAck) line Low. Then it
waits for the host to drive the HostBusy (nAutoFd) line
back to High, after which it drives PtrClk (nAck) back
to High, switches the four control lines to bits 7-4 of the
IOR, and begins waiting for the host to drive HostBusy
(nAutoFd) back to Low. When bits 7-4 have been valid
for 500 ns and the host has driven HostBusy
(nAutoFd) Low, the controller drives PtrClk (nAck) Low
again and begins waiting for the host to drive
HostBusy (nAutoFd) High. When HostBusy (nAutoFd)
has been driven High, the controller returns the four
control outputs to the state set by software in PARC.
At this point, if software or a DMA channel has not yet
written another byte to the Output Holding Register
(thus clearing DREQ), the controller sets Idle and
waits for software to do so. If/when software or a DMA
channel has written a new byte to the OHR, the
controller transfers the byte to the IOR, sets DREQ,
and clears Idle if it had been set. Then, when the
control outputs have been valid for 500 ns, the
controller drives PtrClk (nAck) to High. It then waits for
the host to drive HostBusy (nAutoFd) back to Low, at
which time it switches the four control lines back to bits
3-0 of the IOR and returns to the event sequence at
the start of this paragraph.

If there is no more data to send, when the controller sets
Idle, software should modify PARC to make nDataAvail
(nFault) and AckDataReq (PError) High, and then change
the mode to Peripheral Compatible/Negotiation. Then (af-
ter 500 ns) software should set PtrClk (nAck) back to High
in PARC and enter Reverse Idle state.

Status interrupts in Peripheral Nibble mode include rising
and falling edges on P1284Active (nSelectIn) and nInit.
The controller sets the

IllOp

 (Illegal Operation) bit if
P1284Active (nSelectIn) goes Low in this mode, before it
drives nAck High for the status states on the four control
lines, or after the host drives HostBusy Low thereafter, in
which case software should immediately enter Peripheral
Compatibility/Negotiation mode. If P1284Active goes Low,
but

IllOp

 stays 0, indicating that the Host negated
P1284Active in a legitimate manner, software should enter
Peripheral Inactive mode for the duration of the “return to
Compatibility mode”, and then enter Peripheral Compati-
bility/Negotiation mode.

11.2.11 Host Byte Mode

1. When in Host Negotiation mode the software has
presented the value hex 01 or 05 on PIA27-20, it has
been acknowledged by the peripheral, and the
peripheral has driven nDataAvail (nFault) and
AckDataReq (PError) to Low to indicate data
availability and then driven PtrClk (nAck) back to High,
software should set this mode. This sets PIA27-20 as
inputs regardless of the contents of register E2, and
clears the Idle flag. The controller then waits 500 ns
(as controlled by the PART register) before
proceeding.

2. For each byte, the controller drives HostBusy
(nAutoFd) Low to indicate readiness for a byte from
the peripheral. Then it waits for PtrClk (nAck) to go
Low, at which time it captures the state of PIA27-20
into the Input/Output Register; sets the DREQ bit to
request software, or the DMA channel to take the byte,
and drives HostBusy (nAutoFd) High and HostClk
(nStrobe) Low. When software, or the DMA channel,
has taken the byte (thus clearing DREQ) and the
peripheral has driven PtrClk (nAck) back High, and at
least 500 ns after driving HostClk (nStrobe) Low, the
controller drives HostClk (nStrobe) back to High, and
samples nDataAvail (nFault). If it is still Low, the
controller returns to the event sequence at the start of
this paragraph, otherwise it sets the Idle flag.

Z80185/195

Zilog User’s Manual

UM971800200 11-11

1

In response to Idle, software should enter Host Negotiation
mode. Thereafter, it can set HostBusy (nAutoFd) Low, to
enter Reverse Idle state, or enter Host Compatible mode
(reference IEEE P1284 specification), or conduct a new
negotiation.

If software is programmed not to accept all the data that a
peripheral has available in this mode, it should first disable
the DMA channel, if one is in use, and then wait for DREQ
to be 1 and nAck to be 1. Then it should reprogram the
controller back to Host Negotiation mode, read the last
byte from the IOR, drive HostClk (nStrobe) back to High,
and then drive P1284Active (nSelectIn) Low to instruct the
peripheral to leave Byte mode.

There are no status interrupts in Host Byte mode.

11.2.12 Peripheral Byte Mode

1. Software should not set this mode until there is
reverse data available to send — that is, it should
implement the P1284 “reverse idle mode” via software
in Peripheral Compatibility/Negotiation mode. The
exact sequencing among PtrClk (nAck), nDataAvail
(nFault), and AckDataReq (PError) differs according to
whether this mode is entered directly from Negotiation
or from reverse idle phase, and is controlled by
software. But in either case, before software sets this
mode, it should set nDataAvail (nFault) and
AckDataReq (PError) to Low, then after 500 ns, set
PtrClk (nAck) to High. When it detects that the host
has driven HostBusy (nAutoFd) Low to request data,
software should set this mode, which sets the DREQ
and Idle flags.

2. In this mode, as long as P1284Active (nSelectIn)
remains High, the controller drives PIA27-20 as
outputs, regardless of the contents of register E2.
When software, or a DMA channel, writes the first byte
to the Output Holding Register, the controller
immediately transfers the byte to the Input/Output
Register, clears Idle but negates DREQ only
momentarily, to request another byte from software, or
the DMA channel.

3. After each byte is transferred to the IOR, the controller
waits 500 ns data setup time (as controlled by the
PART register) before driving PtrClk (nAck) Low, and
thereafter waits for the host to drive HostBusy
(nAutoFd) High. When this occurs, if software, or the
DMA channel, has not written more data to the Output
Holding Register, that is, if DREQ is still set, the
controller sets the Idle flag and waits for software or
the DMA channel to do so. If software, or the DMA
channel, then writes data to the Output Holding
Register, the controller clears DREQ and Idle. When
there is data in the OHR and DREQ is 0, this
guarantees that it is appropriate to keep nDataAvail
(nFault), and AckDataReq (PError) Low to indicate
that more data is available, and the controller drives
PtrClk (nAck) back to High. The controller then waits
for a rising edge on HostClk (nStrobe), and then for the
host to drive HostBusy (nAutoFd) Low, at which time it
transfers the byte from the OHR to the Output
Register, sets DREQ, and then it returns to the event
sequence at the start of this paragraph.

While this mode is in effect, software should monitor the in-
terface for two conditions:

Case 1:

Idle set and no more data to send, or

Case 2:

P1284Active (nSelectIn) Low.

In Case #1, the software should write zero to register E3 to
keep PIA27-20 outputs momentarily, and then set the
mode back to Peripheral Compatibility, so that the inter-
face is fully under software control, set nDataAvail (nFault)
and AckDataReq (PError) High to signify no more data,
wait 500 ns, and set PtrClk (nAck) back to High. When
HostBusy goes back to Low, the software should set
PIA27-20 back to inputs.

In Case #2, if a falling edge on P1284Active happens any
time other than between a rising edge on HostClk
(nStrobe), and the next falling edge on HostBusy (nAuto-
Fd), the controller sets the IllOp bit to notify software that
an immediate Abort is in order, in which case software
should immediately enter Peripheral Compatibility/Negoti-
ation Mode. If P1284Active goes Low, but IllOp is not set,
meaning that the Host negated P1284Active in a “legal”
manner, software should enter Peripheral Inactive Mode
for the duration of the “return to Compatibility Mode”, and
then enter Peripheral Compatibility/Negotiation Mode.

Status interrupts in Peripheral Byte Mode include rising
and falling edges on P1284Active (nSelectIn) and nInit.

Z80185/195

User’s Manual Zilog

11-12 UM971800200

11.2.13 Host ECP Forward Mode

1. After a negotiation for ECP mode, “host” software
should remain in Negotiation mode so that it has
complete control of the interface, until one of two
situations occurs. If software has data to send, it
should optionally program the DMA channel to provide
the data, and then set this mode. Alternatively, if
software has no data to send and it detects that
nPeriphRequest (nFault) has gone Low, indicating the
peripheral is requesting reverse transfer, it should set
PIA27-20 as inputs, wait 500 ns, drive
nReverseRequest (nInit) to Low to indicate a reverse
transfer, and then set Host ECP Reverse mode. In
other words, software should handle all aspects of
ECP mode, other than active data transfer sequences.

2. Setting this mode configures PIA27-20 as outputs
regardless of the contents of register E2. On entry to
this mode, the controller sets Idle and DREQ to
request a byte from software or a DMA channel, but
these settings do not cause an interrupt request.

3. If software, or a DMA channel, writes data to the
Output Holding Register while the Input/Output
Register is empty, the controller immediately transfers
the byte to the IOR, clears Idle, and negates DREQ
only momentarily, to request another byte.

4. In this mode, the alternate address for the Output
Holding Register allows software to send a “channel
address” or an RLE count value. Such bytes are
typically written by software rather than a DMA
channel. Writing to the alternate address loads the
OHR and clears DREQ, like writing to the primary
address, but clears a ninth bit that is set when
software, or a DMA channel, writes to the primary
address. A similar ninth bit is associated with the
Input/Output Register, from which it drives the
HostAck (nAutoFd) line.

5. As each nine bits arrive in the IOR and thus out onto
PIA27-20 and HostAck (nAutoFd), the controller waits
one PHI clock and then drives HostClk (nStrobe) to
Low. It then waits for the peripheral to drive PeriphAck
(Busy) to High, after which it drives HostClk (nStrobe)
back to High. Then it waits for the peripheral to drive
PeriphAck (Busy) back to Low. When this has
happened, if software or a DMA channel has written a
new byte to the Output Holding Register, and thus
cleared DREQ, the controller transfers the byte to the
IOR, sets DREQ again, and returns to the event
sequence at the start of this paragraph. Otherwise, it
returns to the event sequence at the start of paragraph
#3. If software, or a DMA channel, does not provide a
new byte for the time indicated in the PART register,
the controller sets the Idle flag.

6. While this mode is in effect, software should monitor
for the condition “Idle and no more data left to send”,
and/or nPeriphRequest (nFault) Low. Host software
has complete freedom as to whether to honor the
peripheral’s reverse request on nFault while it has
data to send. When there is no more data, software
can set Host Negotiation mode to have full control of
the interface, and if requested can drive P1284Active
(nSelectIn) to Low in order to terminate ECP mode, or
can set Host ECP Reverse mode, wait 500 ns, and
drive nReverseRequest (nInit) to Low.

Status interrupts in Host ECP Forward mode include rising
and falling edges on nPeriphRequest (nFault).

Z80185/195

Zilog User’s Manual

UM971800200 11-13

1

11.2.14 Peripheral ECP Forward Modes

1. After a negotiation for ECP mode, “peripheral”
software should remain in Compatibility/Negotiation
mode with P1284Active (nSelectIn) High, so that it has
complete control of the interface, though when it
detects the host drive HostAck (nAutoFd) Low for the
second time, it should then set nAckReverse (PError)
High. If software has data to send, it should drive
nPeriphRequest (nFault) Low at the same time, and
optionally program a DMA channel to provide the data.
Whether or not it has data to send, software should
then set one of the two ECP Forward modes.

2. In these modes, the controller configures PIA27-20 as
inputs regardless of the contents of register E2. On
entry to one of these modes, the controller clears the
Idle bit, if it had been set.

3. For each byte, the controller waits for the host to drive
HostClk (nStrobe) to Low. When HostClk (nStrobe) is
Low and software, or the DMA channel, has taken any
previous byte and thus cleared DREQ, operation
diverges into four cases depending on the state of
HostAck (nAutoFd), the mode, the MSbit of the data,
and the state of an internal 7-bit Run-Length Encoding
(RLE) counter.

If HostAck (nAutoFd) is High, indicating that this byte is
neither an RLE value, nor a Channel Address, the control-
ler captures the data from PIA27-20 into the Input/Output
Register, sets DREQ to request software, or the DMA
channel, to take this byte, and drives PeriphAck (Busy)
High. If the RLE counter is zero, the controller waits (if nec-
essary) for the host to drive HostClk (nStrobe) back to
High, after which it drives PeriphAck (Busy) back to Low
and returns to the event sequence at the start of paragraph
#3. If the RLE counter is non-zero, the controller waits for
software, or a DMA channel, to read the byte from the In-
put/Output Register, negates DREQ only momentarily,
and decrements the RLE counter. It does this until the RLE
counter is zero, at which point it proceeds as described
above. Thus an RLE value of “n” results in the next byte
being provided to software, or a DMA channel “n+1” times.

4. If HostAck (nAutoFd) is Low and the MS bit of the byte
is zero (PIA27 is Low), the byte is an RLE repeat
count. If the mode is “hardware RLE expansion,” the
controller transfers (the seven LS bits of) it to the RLE
counter, leaves DREQ cleared, and drives PeriphAck
(Busy) High.

5. Thereafter, the controller waits for the host to drive
HostClk (nStrobe) back to High, at which time it drives
PeriphAck (Busy) back to Low, and returns to the
event sequence at the start of paragraph #3.

6. If HostAck (nAutoFd) is Low, and PIA27 is High, the
byte is a “channel address.” In this case, or when
PIA27 is Low and the mode is “software RLE
handling,” the controller captures the data from PIA27-
20 into the Input/Output Register, leaves DREQ
cleared to keep a DMA channel from storing the byte,
and sets the Idle bit, which it does not otherwise set
while in this mode. Software should respond to this
condition by reading the byte from the PIA 2 data
register E3. Software can then do whatever else is
needed to handle the situation, and then set Busy
High. Thereafter the controller clears Idle, waits (if
necessary) for the host to drive HostClk (nStrobe)
back to High, and then drives PeriphAck (Busy) back
to Low and returns to the event sequence at the start
of paragraph #3.

While this mode is set, if data to send becomes available,
software should drive nPeriphRequest (nFault) Low to
alert the host of this fact. Also software should monitor the
controller for either of two conditions:

a. If the host drives nReverseRequest (nInit) Low in
response to nPeriphRequest (nFault) Low,
software should drive nAckReverse (PError) Low,
optionally program a DMA channel to provide the
data, and set Peripheral ECP Reverse mode.

b. If P1284Active (nSelectIn) goes Low, the
controller sets the IllOp bit in PARC, if this occurs
between the time the host drives HostClk
(nStrobe) Low, and when the controller
subsequently drives PeriphAck (Busy) back to
Low, in which case software should immediately
enter Peripheral Compatibility/Negotiation mode.
If P1284Active goes Low, but IllOp stays zero,
indicating a “legal” termination, software should
enter Peripheral Inactive mode and sequence the
nAckReverse (PError), PeriphAck (Busy),
PeriphClk (nAck), nPeriphRequest (nFault), and
Xflag (Select) lines to leave ECP mode.

Status interrupts in Peripheral ECP Forward mode include
rising and falling edges on P1284Active (nSelectIn) and
nReverseRequest (nInit).

Z80185/195

User’s Manual Zilog

11-14 UM971800200

11.2.15 Host ECP Reverse Modes

1. In these modes the controller configures PIA27-20 as
inputs, regardless of the contents of register E2. On
entry to one of these modes, the controller clears the
Idle bit, if it had been set.

2. For each byte, the controller waits for the peripheral to
drive PeriphClk (nAck) Low. When this happens, and
software, or the DMA channel, has taken any previous
byte from the Input/Output Register and thus cleared
DREQ, operation diverges into four cases, depending
on the state of PeriphAck (Busy), the mode, the LS bit
of the data, and the state of an internal 7-bit RLE
counter.

If PeriphAck (Busy) is High, indicating that this byte is
neither an RLE value nor a Channel Address, the
controller captures the data from PIA27-20 in the IOR,
sets DREQ to notify software, or the DMA channel to
take the byte, and drives HostAck (nAutoFd) High. If
the RLE counter is zero, the controller then waits (if
necessary) for the peripheral to drive PeriphClk (nAck)
back to High, after which it drives HostAck (nAutoFd)
back to Low and returns to the event sequence at the
start of paragraph #2. If the RLE counter is non-zero,
the controller waits for software, or the DMA channel,
to read the byte from the IOR, negates DREQ only
momentarily, and decrements the RLE counter. It
does this until the RLE counter is zero, at which point
it proceeds as described above. Thus an RLE value of
“n” results in the next byte being provided to software
or a DMA channel “n+1” times.

3. If PeriphAck (Busy) is Low, and the MSbit of the byte
is zero (PIA27 is Low), the byte is an RLE repeat
count. If the mode is “hardware RLE expansion,” the
controller transfers (the seven LSbits of) it to the RLE
counter, leaves DREQ cleared, and drives HostAck
(nAutoFd) High. Thereafter the controller waits for the
peripheral to drive PeriphClk (nAck) back to High, at
which time it drives HostAck (nAutoFd) back to Low
and returns to the event sequence at the start of
paragraph #2.

4. If PeriphAck (Busy) is Low, and the MSbit of the byte
is 1 (PIA27 is High), the byte is a “channel address”. In
this case, or when the LSbit is zero, but the mode is
“software RLE handling,” the controller captures the
data from PIA27-20 in the IOR, leaves DREQ cleared,
to keep a DMA channel from storing the byte, and sets
Idle, which it does not otherwise set in this mode.
Software should respond to this condition by reading
the byte from the PIA 2 data register E3,
reprogramming a DMA channel, if necessary, and
doing whatever else is needed to handle the channel
address, and finally setting HostAck (nAutoFd) High.
Thereafter the controller clears Idle, waits for the
peripheral to drive PeriphClk (nAck) back to High, and
then drives HostAck (nAutoFd) back to Low, and
returns to the start of the event sequence in paragraph
#2 above.

5. If data has become available to be sent while this
mode is in effect and software elects to send it, it
should drive nReverseRequest (nInit) to High, set Host
Negotiation mode to take full control of the interface,
wait for nAckReverse (PError) to go High, and then set
PIA27-20 as outputs.

6. Status interrupts in Host ECP Reverse mode include
rising and falling edges on nPeriphRequest (nFault).
nPeriphRequest carries a valid “reverse data
available” indication during Reverse ECP mode. If so,
enable status interrupts during this mode; if not,
disable them.

Z80185/195

Zilog User’s Manual

UM971800200 11-15

1

11.2.16 Peripheral ECP Reverse Mode

1. In this mode, as long as nReverseRequest (nInit) is
Low, and P1284Active (nSelectIn) is High, the
controller drives the contents of the Input/Output
Register onto PIA27-20, regardless of the contents of
the E2 register. On entry to this mode, the controller
sets Idle, and sets DREQ to request data from
software, or a DMA channel.

2. If software, or a DMA channel, writes data to the
Output Holding Register while the Input/Output
Register is empty, the controller immediately transfers
the byte to the IOR, clears Idle, and negates DREQ
only momentarily, to request another byte.

3. In this mode, an alternate address for the Output
Holding Register allows software to send a “channel
address” or an RLE count value. Such bytes are not
typically written by a DMA channel. Writing to this
alternate address loads the OHR and clears DREQ,
the same as writing to the primary address, but clears
a ninth bit set when software, or a DMA channel, writes
to the primary address. A similar ninth bit is associated
with the IOR, and drives the PeriphAck (Busy) line in
this mode.

4. As each nine bits arrive in the IOR, and thus out onto
PIA27-20 and PeriphAck (Busy), the controller waits
one PHI clock, and then drives PeriphClk (nAck) Low.
It then waits for the host to drive HostAck (nAutoFd)
High, after which it drives PeriphClk (nAck) back to
High. The controller then waits for the host to drive
HostAck (nAutoFd) back to Low. When this has
happened, if software, or the DMA channel, has
written a new byte to the Output Holding Register, and
thus cleared DREQ, the controller transfers the byte to
the IOR, sets DREQ again, and returns to the start of
the event sequence in this paragraph. Otherwise, it
returns to the event sequence at the start of paragraph
#2. If software, or the DMA channel, doesn’t provide
new data within the time indicated by the PART
register, the controller sets the Idle bit.

5. While this mode is in effect, software should monitor
whether the host drives nReverseRequest (nInit) High.
If it detects this, it should set the mode back to
Peripheral ECP Forward, wait 500 ns and then drive
nAckReverse (PError) back to High, before
proceeding as described for Peripheral ECP Forward
mode above.

6. Status interrupts in Peripheral ECP Reverse mode
include rising and falling edges on P1284Active
(nSelectIn) and nReverseRequest (nInit). Since there
are no “legal terminations” during the time this mode is
set, the controller sets IllOp for any falling edge on
P1284Active (nSelectIn) in this mode.

© 1998 by Zilog, Inc. All rights reserved. No part of this
document may be copied or reproduced in any form or by
any means without the prior written consent of Zilog, Inc.
The information in this document is subject to change
without notice. Devices sold by Zilog, Inc. are covered by
warranty and patent indemnification provisions appearing
in Zilog, Inc. Terms and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS,
STATUTORY, IMPLIED OR BY DESCRIPTION,
REGARDING THE INFORMATION SET FORTH HEREIN
OR REGARDING THE FREEDOM OF THE DESCRIBED
DEVICES FROM INTELLECTUAL PROPERTY
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY
PURPOSE.

Zilog, Inc. shall not be responsible for any errors that may
appear in this document. Zilog, Inc. makes no commitment
to update or keep current the information contained in this
document.

Zilog’s products are not authorized for use as critical
components in life support devices or systems unless a
specific written agreement pertaining to such intended use
is executed between the customer and Zilog prior to use.
Life support devices or systems are those which are
intended for surgical implantation into the body, or which
sustains life whose failure to perform, when properly used
in accordance with instructions for use provided in the
labeling, can be reasonably expected to result in
significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave.
Campbell, CA 95008-6600
Telephone (408) 370-8000
FAX 408 370-8056
Internet: http://www.zilog.com

