The 6809 ing the performance of an unwieldy bureaucratic

Part 1: Design Philosophy organization. And the computer makers clearly
thought that processor time was valuable too; or

Terry Ritter was a severely limited resource, worth as much as

Joel Boney the market would bear.

Motorola, Inc. Processor time was a limited resource. But

3501 Ed Blustein Blvd. some of us, a few small groups of technologists,

Austin, TX 78721 are about to change that situation. And we hope we

will also change how people look at computers,
This is a story. It is a story of computers inand how professionals see them too. Computer
general, specifically microcomputers, and of onetime should be cheap; people time is 70 years and
particular microprocessor - with revolutionary counting down.
social change lurking in the background. The story The large computer, being a very expensive
could well be imaginary, but it happens to be trueresource, quickly justified the capital required to
In this 3 part series we will describer the design oinvestigate optimum use of that resource. Among
what we feel is the best 8 bit machine so far madéhe principal results of these projects was the

by human: the Motorola M6809. development of batch mode multiprocessing. The
computer itself would save up the various tasks it
Philosophy had to do, then change from one to the other at

computer speeds. This minimized the wasted time

A new day is breaking; after a long slow twi- between jobs and spawned the concept of an oper-
light of design the sun is beginning to rise on theating system.
microprocessor revolution. For the first time we
have mass production computers; expensive cus
tom, cottage industry designs take on less impor-
tance.

Microprocessors are real computers. The
first and second generation devices are not ver
sophisticated as processors go, but the are generzl
purpose logic machines. Any microprocessor can
eventually be made to solve the same problems a
any large scale computer, although this may be ar
easier or harder task depending on the micro-
processor. (Naturally, some jobs require doing
processing fast, in real time. We are not discussingg
those right now. We are discussing getting a big
job done sometime.) What differentiates the class-
es is a hierarchy of technology, size performance,
and curiously, philosophy of use.

A processor of given capability has a fixed
general complexity in terms of digital logic ele-
ments. Consider the computers that were built
using the first solid state technology. In short they
consisted of many thousands of individual transis-
tors and other parts on hundreds of different print-
ed circuit boards using thousands of connections
and miles of connecting wire. A big computer was
a big project and a very big expense. This simple
economic fact fossilized a whole generation of
technology into the “big computer philosophy.”

Because the big computer was so expensive
time on the computer was regarded as a limited}
and therefore valuable resource. Certainly the time photo 1: Systems architects Ritter (right) and Boney review some of the
was valuable to researchers who could now look 6809 design documents. This work results in a complete description of the
more deeply into their equations than ever before.desired part in a 200 page design specification. The specification is then
Computer time was valuable to business peopleused by logic designers to develop flowcharts of internal operations on a
who became at least marginally capable of analyz-cycle by cycle basis.

Photo 2: 6809 logic design. Design engineeaywé Harington inspects a pdion of the 6809 pirocessor logic blueprint at the
Motorola Austin plant. The print is coled by systems engineers totjian the logic for the logic-equivalent TThr eadboad.”

People were in the position of waiting for equipment and expertise. But most people, includ

the computernot because they were less impor ing scientists and engineers, still used only the
tant than the machine, but precisely because it wagery lage central machines. Rarely were mini
a limited resource (the problems it solved werecomputers placed in schools; few computer sci
not). ence or electrical engineering departments (who
Electronics know-how continued to develop, might have been at the leading edge of new gener
producing second generation solid state technolaation technology) used them for general instruc
gy: families of digital logic integrated circuits tion.
replaces discrete transistors desigikis new And so the semiconductor technologists
technology was exploited in two main thrusts: bigbegan a third generation technology: the ability to
computers could be made conceptually bigger (obuild a complete computer on a single chip of sil
faster or better) for the same expense, or computicon. The question then became, “How do we use
ers could be made physically smaller and lesshis new technology (to make money)?”
expensive.These newsmaller computers (mii The semiconductor produc¢emproblem with
computers) filled market segments which couldthird generation technology wa that an unbeliev
afford a sizable but not huge investment in bothably lage development expense was (and is)

About the Authors

Joel Boney and éfry Ritter ae with the Motosla 6800
Microprocessor Design @up inAustin TX. Joel isasponsible for thg
softwae inputs into the design of the 6800 familggassors and periph
eral paits and was a co-ahitect of the M6809.€fry Ritter is a mioo-
component athitect, esponsible for the specification of the 68
advanced miaprocessar While with Motoola, Terry has been co
Architect of the 6809, and cognitect as well of the 6847 and 6804
video display generator integrated @iits. He holds a BSESofn the
University of €xas asAustin and Joel Boney has a BSnir the
University of South Florida.

|7

required to produce just onedarscale integration
(LSI) chip.The best road to profit was unclear; for
a while, customer interconnection of gate array
integrated circuits was tried, then dropped.
Complete custom designs were (and are) found to
be profitable only in vary lge volumes.

Another road to profit was to produce a few
programmable lare scale integration devices
which could satisfy the market needs (in terms of
large quantities of diérent systems) and the fac
tory;s needs (in terms of volume production of
exactly the dame device). Naturalthe general-
purpose computer was seen as a possible answer

So what was the market for a general-pur phases of the design.
pose computerPhe first thought was to enter the Logic design consists of the production of a
old second generation markets; ie: replacement afycle by cycle flowchart and the derivation of the
the complex logic of small or medium scale inte equations and logic circuitry necessary to imple
gration. Control systems, instruments and speciainent the specified desigthis is a job of
designs could all use a simular procesbat this immense complexity and detail, but it is absolute
designer was the keyesigners (or design man ly crucial to the entire projecThroughout this
agers)had to be converted from their heavy firsphase, the specification may be iterated toward a
and second generation logic design backgroundecal optimum of maximum features at minimum
to the new third generation technology so logic (and thus costlhe architectural design cen
doing, some early marketing strategists evertinues, and techniques are developed to cross-
looked the principal microprocessor markets. check on the logical correctness of the architec

Random logic replacement was by no meansure.
a quick and stiicient market for microprocessors. The third phase is the most hectic in terms of
In particular the design cycle was quite long, demands and involvement. By this time, many The other major device
users we often unsophisticated in their use of-compeople know what the product is and see the;ﬁfﬁiﬂﬁi’&%@iéﬁ%
puters, and the unit volumes was somewhat smalfesulting part merely as the turning of an imple generator color TV
Only when microprocessors entered high volumanentation “crank.” It seems to those who are notinterface-is presently in
markets (hobhygames, etc) did the manufacturesinvolved in this phase that moref@t could case volume production.

. . . . Several versions are
begin to make money and thus provide a credibléhat crank to turn fasteBince the product could be ;ajiaple, many derived
reason (and funds) for designing future micro sold immediatelydelay is seen as a real loss of from the original
processors. Naturallyhe users who wanted more income. In actual practice, mordat will some Motorola architecture
features were surprised that it was taking so longimes “break the crank.”
to get new designs - they knew what was needed. A medium scale integration logic implemen

Thus semiconductor makers began to realizeéation (usually transistetransistor logic, for
that their market was more oriented to hobbyspeed) is required to verify the logic design.
applications that to logic replacement, and wagrocessor emulation may require tenfefiént
more generalized than they had thought. But evebhoards of 80 medium scale integrated circuits each
the hobby market was saturable. and hundreds of board to board interconnections.

Meanwhile companies continued to improve Each board will likely require separate testing, and
production and reduce costs, and competitioronly then will the emulation represent the preces
drove process down into the grouldhere could sor to come. Extensive test programs are required
they sell enough computers for real volume-proto check out each facet of the part, each instruc
duction, the wondered. One answer was the petion, and each addressing modlis testing may
sonal computer!

Design of Lage Scale Integration Parts

The design of a complex & scale integra
tion (LSI) part may be conveniently broken into
thee phases: the architectural design, the logic ang
the layout software and hardware (breadboard)
simulations. Each phase ha its own requirements.

The architect/systems designers represent thq
use of the device, the need of the marketplace ang
the future needs of all customeildey propose
what a specific customer should have that could
also be used by other customers, possible in dif
ferent ways.They advocate what the customers
will really want, even when if no customers can be
identified who know that they will want it. that it
is possible or that they will want iThe attitude
that “I know what is best for you” and be irritating

to mpst people, EUtI.'t '.St ndecessary mpr?r?r o makePhoto 3: 6809 emulator bodr Softwae and systems engineers implement
maximum use of a limited resource (in this case, a4 functional equivalent of the 6809 as a 6808gpam.A 6800 to 6809 arss

single LS| de_sign)The g_rchi_tect eventgally gerer assembler allows 6809 ggrams to be assembled and then executed as a
ates the design specification used in subsequen hack of the ahitectural design.

detect logic design errors that will have to be fixedbase that represents the chip design is sent to the
at all levels of design. mask shop (the mask is a photographic stencil of
Circuit design, in the context of the semieon the part used in the manufacturing processjhe
ductor industry depends upon running computer mask shop precision plotting and photographic
simulation (which require sophisticated devicestep and repeat techniques are used to produce
models) of signals at various nodes to verify thaglass plates for each mask layeach mask covers
they will meet the necessary speed requiremengn entire wafer with etched nickel or chrome-lay
Transistors are sized and polysilicon lines changeduts at real chip size. (pical LSI device will be
to provide reliable worst case operation. between 5 by 5 and 7.6 by 7.4 mm (0.2 by 0.2 and
Layout is the actual task of arranging transis 0.3 by 0.3 inchesYhese masks are used to expose
tors and interconnections to implement the logicphotosensitive etch resist the will protect some
diagram. Circuit design results will indicate appro areas of the wafer from the chemical processes
priate transistor sizes and polysilicon widths; thesavhich selectively add the impurities that create
must now be arranged for minimum area. Evenyransistors.
attempt is made to make general logic “cells” Actual processing steps are quite simular for
which can be used in many places across the inteach part. But the processing itself is a variable,
grated circuit, but minimization is the principal and it will not be known until final testing exactly
concern. how many parts will turn out to be saleable.
The layout for the chip eventually exists only Therefore, a best estimate is taken, and the
as a computer data base. Each cell is individuallyequired numbers of wafers (of a particular device)
digitized into the computerhere is can be arbi is started and processedhe whole industry
trarily positioned, modified or replicated as revolves around highly trained production engi
desired. Lage 2 by 3 m (6.5 by 10 feet) plots of neers, chemists and others who process wafers to
various areas of the chip are highly secret recipes. Some recipes work, some
Photo 4: Cicuit design. Detailed computer hand checked to the logic don't. You find out which ones do by testing.
simulations of the cauit under design yield diagram by layout and eir Each die (ie: individual lge scale integra
predictions of on chip waveformsulley cuit designers as final tion circuit) is tested while still on the wafer; fail
Peters and Byant Wider decide to checks of the implemented ing devices are marked with a blob of inkie
enhance a pdicular critical transistor circuit. wafer is sawed into individual dies and the good
When layout is com devices placed into a plastic or ceramic package
plete, the computer data baseThe connection pads are “die bonded” to the

exposed internal lead frame with very tiny wire.vendors. Simply having dérent input and output

The package is then sealed and tested again. (1O) or using a dierent memory location is usual
Testing a device having only 40 pins butly enough to make the read only product useless.

which has up to 40,000 internal transistors is no Q: What is needed?

mean trick nor a minor expense. Furthermore, the A: 1. Position independent code.

device must execute all operations properly at the 2. Temporary variables on the stack.
worst case system conditions (which may be high 3. Indirect operations through the stack
or low extremes of temperature, voltage and{oadfor input and output.

ing) and work with other devices on a common 4. Absolute indirect operation for system

bus. Thus, the device is not specified to its ownbranch tables.
maximum operating speed, but rather the speed of
a worst case system. Motorola microprocessors And so it went. How could we make a device
can usually be made to run much faster (and mucthat would answer the software problems of two
slower) than their guaranteed worst case speeificagenerations of processors? How indeed!
tions.
Design Decisions
Project Goals
Usually an engineering project may be -pur

The 6809 project started life with a numbersued in many ways, but only one way at a time.
of (mostly unformalized) goal3he principle pub The ever present hope is that this one time will be
lic goal was to upgrade the 6800 processor to bthe only time necessarffurthermore, it would be
definitely superior to the 8 bit competition. (The nice to get the project over with as soon as possi
Motorola 68000 project will address the 16 bitble to get on with selling some products.répid
market with what we believe will be another supe return on investment is especially important in a
rior processoy Many people, including many cus time of rapid inflation.)To these honorable ends
tomers, felt that all that had to be done was to addertain decisions are made which delineate the
another index register (Y), a few supporting
instructions (LDY STY) and correct some of the
past omissions (PSHX, PULX, PSHU,m PJL rI
Since this would mean a rather complete redesig
anyway it made little sense to stop there.

A more philosophical goal — thus one much
less useful in discussions with engineers and-man
agers (who had their own opinions of what the
project should be) — was to minimize software
cost. This led to an extensive, and thus hard to
explain sequence of logic that went somewhat like
this:

Q: How do we reduce software costs?

A: 1. Write code is a block structured high
level language.

2. Distribute the code in mass production
read only memories.

Q: Why arent many read only memories
being used now?

A: 1. The great opportunities for error in
assemble language allow many mistakes which
incur sever read only memory costs.

2. The present architecture is not suitable
for read only memories.

Q: In what way are the second generation
processors unsuitable?

A ltis very dificult to use aread only mem ppotg 5: Checking the flowchar Logic and cicuit designer Byant Wider
ory in any other context than that for which it was ¢ompaes the specification to one of the flowdsaihe flowchas are used
originally developed. It is hard to use the same o develop Boolean equations for treguired logic; those equations er
read only memory on systems built byfelitnt then used to generate a logic diagram.

Instruction Class Percent Usage

Loads 23.4
Stores 15.3
Subroutine calls and returns 13.0
Conditional branches 11.0
Unconditional branches and jumps 6.5
Compares and tests 6.2
Increments and decrements 6.1
Clear 4.4
Adds and subtracts 2.8
All others 11.3

Table 1: 6800 instuction types based on static analysis
25,000 lines of 6800 sate code. In static analysis th
actual number of occuences of each ingtction is ta

lied from pogram listings. In the alternate techniqu
called dynamic analysis, the numbers of ocences of
an instuction is tallied while the gram is unning.An

instruction inside a psgram loop would thefore be
counted ma than once

of

o

investment and risk undertaken in an attempt t

achieve a new product.

The 6809 project was no exceptidio. min-
imize project risk it was decided that the 6809

would be built on the same technological base as
the recently completed 6800 depletion loa
redesign. In particularthe machine would be a
random logic computer with essentially dynamic

compatible with the 6800 at some level.

Compatibility was the basis for the 6809
architecture design. It implied that the 6809 could
capitalize on the existing familiarity with the
6800. 6800 programmers could be programming
for the 6809 almost immediately and could learn
and use new addressing mode and features as they
were neededlhis decision also ended any consid
eration of radically new architecture for the
machine before it was begun.

A corporation selling into a given market is
necessarily limited to moderate innovatidmy
vast product change requires reeducation of both
the internal marketing ganization and the cus
tomer base before mass sales can proceed.
Consequentlydesigners have to restrict theircre
ativity to conform to the market desireShe
amount of change actually implemented, produced
and seen by society is the true meaning of a-com
puter “generation.” In the end, society itself
defines the limits of a new generation, and a
design years ahead of its time may well fail in the
6narketplace.

M6800 DataAnalysis

Once the initial philosophical and marketing

dtrade-ofs were made, construction of the final

form of the M6809 began. By this time adar
numbers of M6800 programs had been written by

internal operation. It would use the reliable 6800°°th Motorola and our customers, so it was felt
type of storage registeFunctions would be com | | £ oxisti
patible with the defined 6800 bus and 6800 periph2nalyZe lage amounts of existing 6800 source

erals.This decision would extend the like of parts
already in production and minimize testing

that a good place to start design of the 6809 was to

code. Surprisinglythe data gathered about 6800
usage of instructions and addressing modes agreed

peripheral devices for a particular processor (6806“b5t""ntIaIIy with simular data previously com

versus 6809). Buss compatibility dodshave

mean identity — the new device could have-con
siderably improved specifications but could not do
worse than the specifications for the existing
device.This mandate was a little tricky when you
consider that we were dealing with a more eom

to

plex device using exactly the same technalbgy

there was a slight edge: the advancing vergelar

scale integration (VLSI) learning curve.

piled for minicomputers and maxicomputers. By
far the most common instructions were load and
stores, which accounted for over 38 percent of all
6800 instructions. Next were the subroutine calls
(Direct, Extended, Immediate, Indexed, Relative,
Accumulator) had nearly equal usage, which-indi
cated that programmers actually took advantage of
the bytes to be saved by direct (page zero) address
ing and indexed addressing. Furthermore ttie of

One wide range decision wa that the neWsets for indexed instructions were either O or less

device would be an improved 6800 pafhe

widely known 6800 architecture would be iterated
y béhe addressing modes (as discussed later) with out

and improved, but no radical departure would

considered. In fact, the new devise should be codd®

Table 2: Size of offsets used in Index Offset

Percent Usage

6800 indexed addssing, based 0 40.0
on static analysis of 25,000 lines 1-31 53.0
of 6800 souze code. 32-63 1.0

64-255 6.0

than 32 (see table 2).
This information was used to greatly expand

aking the 6800 programs require more code
when converted to run on the 6808so the
number of increment or decrement index regis
ter instructions in loops indicated that autoincre
menting and autodecrementing would be benefi
cial. Auto decrementing and autoincrementing
are simular to indexing except the index register
used is decremented before, or decremented

after, the addressing operation takes place.

As all programmers and even architects like
ourselves eventually learn, consistent and uniform
instruction sets are used mordeefively than
instruction sets that treat similar resource (10; reg
isters or data) in dissimilar ways. For example, the LU USER STACK POINTER |
least used instructions on the 6800 were those tha
dealt with theA accumulator in specific ways that [SHARDWARE STACK POINTER | |
did not apply to the B accumulator (&BA: add

| X INDEX REGISTER |)

[Y INDEX REGISTER |

POINTER REGISTERS

B toA, CBA: compare B td\). It's not that these [rc | PROGRAM COUNTER
instructions are not useful, stjust that program
mers will not use inconsistent instructions or A 5 | AccumuLATORS

addressing modes. Consistency became the battl 1

cry of the M6809 designers!
y g DIRECT PAGE REGISTER

HWVH CC-CONDITION CODE REGISTER
At the completion of the 6800 analysis stage, L carry-sorrow

Customer Inputs

. .. . g . OVERFLOW
the first preliminary design specification for the ZERO
6809 was generatedhis preliminary specifica NEGATIVE
tion was then taken to about 30 customers who . L'.\',ILEFRSXRP;YREQUEST MASK
represented a cross section of current 6800 users — E/:‘STITF:E'TS'ETi?ggLRS'EngEST MASK
as well as some customers and consultants knowtr
to be hostile to the 680With these customers vis Figure 1: 6809 pogramming model.
its we hoped to resolve two major questions about
the 68095 architecture:

could remap the 6800 op codes in a manner-guar

1) Which architecture was more desirable g&ntéed to produce more bytdi@ént and faster
bit or 16 bit? 6809 programsThe remapping of op codes was

2) Did 6809 compatibility with the 6800 greatly afected by the 6800 data analysis. Some

need to occur at the object level or at the sourciW occurrence 6800 instruction were combined
level. into consistent 2 byte instructions, allowing the

more useful instruction to take fewer bytes and
Most customers felt that an 8 bit architectureexecure fasteAlso, some 6800 instructions were

was adequate for their upcoming applications, an&liminated completely in favor of 2 instruction
they did not want to pay the price penalty for 16seqL.JencesThese sequences are generated-auto
bit as long as the 6809 included the most commofnatically by our assembler when the 6800
16 bit operations such as add, subtract, load, stor8in€monic is recognizedhis remapping in favor
compare and multiply Many were interested of more often us_ed functions results in 6899- pro
though, in Motorola advanced 16 bit processor grams that require only one half to two thirds as
(68000) for future 16 bit applications. From the MUCh memory as 6800 programs, and run faster
very inception of the6809 project it was a require
ment that the 6809 would be compatible with the
6800.Wether this compatibility needed to occur at)
the object level or at the assembly language '’hat, then, are the pertinent feature::, that
(source code) level was a question we felt our cugnake .the 6809 a next gengratmn procesgor._ln the
tomers should help us answeirtually every cus foIIO_/vmg paragraphs we will attempt to highlight
tomer indicated that source compatibility was suf € improvements made to the 680e pro
ficient because they would not try to use 6800 read'@mming model for the 6809 (figure 1) consists
only memories in 6809 systems. Most customeré’f four 8 bit registers and five 16 bit registers.
indicated that they would take advantage of the. ~ 1heA and B accumulators are the same as
6800 compatibility in order to initially convert th0Se Of the 6800 except that they can also be cate
running 6800 programs into running 6809 -pro nated into théA:B pair, called the D registefor

grams, and then modify the 6800 code to take-0 Pit Operations. _
advantage of the 68G9features. The condition codes are simular to the 6800,

The decision not to be object code compati with the inclusion of two new bit3he F bit is the
ble was an easy one for us since it meant that wgterrupt mask bit for the new fast interruphe

M6809 Registers

Nonindirect Indirect
+ | + + | +
Type Forms Source Post Byte ~ | # | Source Post Byte ~ | #
Constant no offset R 1RR00100 0O [LR] 1RR10100 3]0
offset from R 5 bit offset n,R ORRnnnnn 110 defaults to 8-bit
8 bit offset n,R 1RR01000 111 [n,R] 1RR11000 | 4 | 1
16 bit offset n,R 1RR01001 4 | 2 [n,R] 1RR11001 712
Accumulator A register offset AR 1RR00110 110 [AR] 1RR10110 | 4 | O
offset from R B register offset B,R 1RR00101 110 [B,R] 1RR10101 4 10
D register offset D,R 1RR01011 410 [D,R] 1RR11011 710
Autoincrement/ | increment by 1 R+ 1R000000 21|10 not allowed
—decrement R increment by 2 ,R++ 1RR00001 3|0 [[R++] 1RR10001 6 | 0
decrement by 1 -R 1RR00010 210 not allowed
decrement by 2 R 1RR00011 310 [,--R] 1RR10011 6 |0
Constant offset 8 bit offset n,PCR 1XX01100 111 [n,PCR]| 1XX11100 4 |1
from program 16 bit offset n,PCR 1XX01101 5|2 [n,PCR]| 1XX11101 8 | 2
counter
Extended use nonindexed [n] 10011111 512

Table 3: Indexed adéssing modegill instructions with indexed addssing
have a base size and number of cycles.Thed {, columns indicate the
number of additional cycles and bytes for thetipafar variation. The post
byte op code is the byte that immediately follows the normal op code.

resisters are also stack pointéfhe S register is
used during interrupts and subroutine calls by the
hardware to stack return addresses and machine

states.

The last 16 bit register is the program ceunt

er. In certain 6809 addressing modes, the program
fast interrupt (FIRQ) only stacks the programcounter can also be used as an index register to
counter and condition code register when an interachieve position independent code.
rupt occursThe interrupt routine is then responsi
ble for stacking any registers it usé&te E bit is
set when the registers are stacked during interrupts
if the entire register set was saved (as in nonmask It was out opinion that the best way to
able and maskable interrupts) or cleared if thdmprove an existing architecture and maintain
short register set was saved (for a fast interrupt). source compatibility was to add powerful address

On the 6800, an instruction with direct modeing modes. In out viewthe 6809 has the most
(or page zero) addressing consisted of an op codg@werful addressing modes available on any
followed by an 8 bit value that defined the lowermicroprocessor Powerful addressing modes
eight bits of an addreshe upper eight bits were helped us achieve out goals of position independ
always assumed to be zefidhus, direct address €nce, reentrangyecursion, consistency and easy
ing could only address locations in the lowest 256mplementation of block structured high leveldan
bytes of memoryThe 6809 adds versatility to this guages.
addressing mode by defining an 8 bit direct page All the 6800 addressing modes (immediate,
register that defines the upper eight bits of addressxtended, Direct, IndexeAccumulator Relative,
for all direct addressing instructioriBhis allows and inherent) are supported on the 6809 with the
direct mode addressing to be used throughout thdirect mode of addressing made more useful by
entire address space of the machifemaintain the inclusion of the direct page register (DPR).
6800 compatibility the direct page register is set The direct page register usage and direct
to 0 on reset. addressing need some explanation, since they can
Four 16 bit indexable register are included inbe very efective when used correctlffor exam

the 6809They are the XY, U and S register§he Ple, since global variables are referenced freguent
X register is the familiar 6800 index registand ly in high level language execution, the direct page
the S register is the hardware stack poifiteeY register can be used to point to a page containing
register is a second index register; the U register i€ global variables while the stack contains the
the user stack pointefll four registers can be local variables, which are also referenced- fre
used in all indexing operations and the U and Siuently This creates very g¢ient code which is

Addressing Modes

00001 NAM AUTOEX

00003 OPT LLEN=80

00004 *

00005

00006 * COMPARE STRINGS SUB

00007 *

00008 * FIND AN INPUT ASCII STRING POINTED TO BY THE
00009 * X-REGISTER IN A TEXT BUFFER POINTED TO BY THE
00010 * Y-REGISTER. THE BUFFER IS TERMINATED BY A
00011 * BYTE CONTAINING A NEGATIVE VALUE. ON ENTRY
00012 * A CONTAINS THE LENGTH OF THE INPUT STRING. ON
00013 * EXITY CONTAINS THE POINTER TO THE START
00014 * OF THE MATCHED STRING + 1 IFF Z IS SET. IFF Z
00015 * IS NOT SER THE INPUT STRING WAS NOT FOUND
00016 *

00017 * ENTRY:

00018 * X POINTS TO INPUT STRING

00019 * Y POINTS TO TEXT BUFFER

00020 * A LENGTH OF INPUT STRING

00021 * EXIT:

00022 * IFF Z=1 THEN Y POINTS TO MATCHED STRING + 1
00023 * IFF Z = 0 THE NO MATCH

00024 * X IS DESTROYED

00025 * B IS DESTROYED

00026 *

00027

00028 *

00029 0100 6 ORG $100

00030 0100 E6 AO 6 CMPSTR LDB Y+ GET BUFFER CHARACTER

00031 0102 2A 01 3 BPL CMP1 BRANCH IS NOT AT BUFFER END
00032 0104 39 5 RTS NO MATCH, Z=0

00033 0105 E184 4 CMP1 CMPB X COMPARE TO FIRST STRING CHAR.
00034 0107 26 F7 3 BNE CMPSTR BRANCH ON NO COMPARE
00035 *SAVE STATE SO SEARCH CAN BE RESUMED IF IT FAILS

00036 0109 34 32 9 PSHS AXY

00037 010B 30 01 5 LEAX 1,X POINT X TO NEXT CHAR

00038 010D 4A 2 CMP2 DECA ALL CHARS COMPARE?

00039 010E 27 0C 3 BEQ CMPOUT IF SO, IT'S A MATCH, Z=1

00040 0110 E6 AO 6 LDB Y+ GET NEXT BUFFER CHAR

00041 0112 2B 08 3 BMI CMPOUT BRANCH IS BUFFER END, Z=0
00042 0114 E1 80 6 CMPB X+ DOES IT MATCH STRING CHAR?
00043 0116 27 F5 3 BEQ CMP2 BRANCH IF SO

00044 0118 35 32 9 PULS AXY SEARCH FAILED, RESTART SEARCH
00045 011A 20 E4 3 BRA CMPSTR

00046 011C 35 B2 11 CMPOUT PULS AX)Y,PC FIX STACK, RETURN WITH Z
00047 *

00048 0000 END

Listing 1: 6809 autoin@menting example. This sobtine seaches a text buffer for the oceance of an input string. In autoirenent
mode, the value pointed to by the indegister is used as the effective aaidr and the indexegister is then ine@mented.

safe since the compiler keeps track of the directo 6800 users, but the 6809 allows thisetfto be
page registeiThe direct page register can also beany of four possible lengths: 0, 5, 8 or 16 bits, and
used diectively and safely in a multitasking envi the ofsets are signed tw®’complements values.
ronment where the real time operating systenThis allows greater flexibility in addressing while
allocates a diérent base page register for eachachieving maximum byte fdiency. The inclusion
task. of the 16 bit ofset allows the role of index regis

On the other hand, it would be quite danger ter and ofset to be reversed if desiredl.further
ous to indiscriminately reallocate the direct pageesnhancement allows all of the above modes to
register frequentlysuch as within subroutines or include an additional level of indirection. Even
loops, since it might become very easy to loseextended addressing can be indirected (as a special
track of the current direct page register valueindexed addressing mode). Since either stack
Therefore, even though the direct page register ipointer can be specified as a base address in
unstructured, we included it because, when usethdexed addressing, the indirect mode allows
correctly the byte savings are significaAtso, to addresses of data to be passed to a subrotUtiee.
make direct addressing more useful, the read-modubroutine can then reference the data pointed to
ify write instruction on the 6809 now have all with one instructionThis increases thefafiency
memory addressing modes: Direct, Extended andf high level language calls that pasguaments by
Indexed. reference.

The major improvements in the 6889’ M6800 data indicated that quite often the
addressing mode were made by greatly expandinimdex register was being used in a loop and incre
the indexed addressing modes as well as makingnented or decremented each tiffieis moved the
all indexable instructions applicable to the¥XU pointer though tables or was used to move data
and S registers (see table 3). from one area of memory to another (block

Indexed addressing with anfgédt is familiar moves). Therefore, we implemented autoincre

00010
00011
00012
00013
00014
00015
00016

Listing 2: Array subscript calculations. This 6809ogram fetches a 16 bit valueofn a two-
dimensional aray called CA, with dimensions: CRA(100,30).

0100
0100
0104
0106
0108
0109
010B

1

ment and autodecrement indexed addressing in the Quite often the programmer needs to calcu
M6809. In autoincrement mode the value pointedate the ofset used by an indexed instruction-dur
to by the index register is used as thiedive ing program execution, so we included an index
address, and then the index register is incrementnode that allows th&, B, or D accumulator to be
ed.Autodecrement is similar except that the indexused as an ffet to any indexable registefor
register is first decremented and then used texample, consider fetching a 16 bit value from a
obtain the dkctive address. Listing 1 is an exam two dimensional array called TAwith dimen

ple of a subroutine that searches a textfdodbr sions: CA (100,30). Listing 2 shows the 6809
the occurrence of an input string. It makes heavgode to accomplish this fetcfthese addressing
use of autoincrementing. modes can also be indirected.

Since the 6809 supports 8 and 16 bit opera Implementation of position independent
tions, the size of the increment or decrement casode was one the highest priority design goals.
be selected by the programmer to be 1 ofti2 The 6800 had limited position independent code
post increment, predecrement nature of theapabilities for small programs, but we felt the
addressing mode makes it equivalent in operatio8809 must make this type of code so easy to write
to a push and pull from a stadkhis allows the X that most programmers would make all their-pro
andY registers to also be used as software stacgrams position independeifo do this a addition
pointers if the programmer needs more than twal long relative (16 bit déet) branch mode was
stacks.All indexed addressing modes can alsoadded to all 6800 branches as well as adding pro
contain an extra level of post indirection. gram relative addressing. Program relative
Autoincrement and autodecrement are more versaddressing uses the program counter much as
tile than the block moves and string commandsndexing uses on of the indexable regist@itsis

available on other processors. allows all instructions that reference memory to
ORG $100 reference d(_e\ta _rel_ative to the c;L_Jrreljt program

4 LDY #CAT LOAD BASE ADDRESS OF ARRAY counter (which is inherently position independ

5 D8 Fo MOTES By BRSR D MENSION ent). Of course, program relative addressing can

1 MUL be indirected.

S LoD B%BZ FETCHVALUE oot The addressing modes of the 6809 have cre

ated a processor that has been termed a “pregram
mer's dream machineTo date all the benchmarks
we have written for the 6809 are position inde

pendent, modulareentrant and much smaller than
comparable programs on other microprocessors. It
is easier to write good programs on the 6809 than
bad ones!

New or Innovative Instructions

The 6809 does not contain dozens of new
innovative instructions, and we planned it that
way. What we wanted to do was clean up the 6800
instruction set and make it more consistent and
versatile We do not feel a processor with 500-dif
ferent assembler mnemonics for instructions is
better than on with 59 powerful instructions that
operate on dférent data in the manndor exam
ple, the 6809 contains a transfer instruction of the
form TFR R1, R2 that allows transfer of any like-
sized registersThere are 42 such valid combina
tions on the 6809, and clearly ofER instruction
is easier to remember than 42 mnemonics o the
form: TAB, TBA, TAP, TXY, etc. Also an
exchange instruction (EXG) exists that has identi
cal syntax to th@FR instruction and has 21 valid
forms. In the time it took to read three sentences
you just learned 63 new 6809 instructiorss
another example, we combined the instructions

that set and cleared condition code bits on the

6800 into two 6809 instructions thaND or OR 6809 STACKING ORDER

immediate data into the condition code register —
Other significant new instructions include

the new 16 bit operation§he D register can be = Y

loaded, stored, added to subtracted from, -com

pared, transferred, exchanged, pushed and pulled PC, PUSH ORDER

All the indexable registers (16 bits) and be loaded, 10 PC,,

stored and comparedhe load dfective address uss, l

instruction can also be used to perform 8 or 16 bit 8.S U,

arithmetic on the indexable registers as describec »

later. -
Two significant new instructions are the mul 0s i

tiple push and multiple instructions on the 6809. X

With one 2 byte instruction any register or set of 45 X

registers can be pushed or pulled from wither 38 DPR

stack. These instructions greatly decrease the 2.8 B

overhead associated with subroutine calls in both 1S A

assembly and high level language programs. In o 0s cen PULL FROM STACK

conjunction with instructions using autoincrement PusH ONTO STACK

and autodecrement, the 6809 cdiiciently emu a A l

late a stack computer architecture, which means it

should e difcient for Pascal p-code interpreters 0000 .

and the like. Figure 2: 6809
The orders in which the registers are pushed he LEAinstruction, in conjunction with program push/pull and

mterrupt stacking

or pulled from the stacked is given in figure 2.counter relative addressing, makes this p055|ble
Note that not all registers need to be pushed owith one instruction on the 6809. For example, to ©
pulled, but that the order is retained if a subset i®ut the address of a table DG located in a relative
pushedThis stacking order is also identical to theread only memory into indexable register U:
order used by all hardware and software interruptd-EAU DG, PCR; or to find out where a position
One new instruction in the 6809 is a sleeperindependent read only memory is located: YEA
The load dkctive address to indexable register®, PCR (orTFR PC)Y). Our benchmarks show the
(LEA) instruction calculates thefettive address LEA instruction to be the most used new 6809
from the indexed addressing mode and depositéstruction by far
that address in an indexable registather than An unsigned 8 bit by 8 bit to 16 bit multiply
loading the data pointed to by théeetive address Was provided for the 6809he A accumulator
as in a normal loadrhis instruction was original ~ contains one gument and the B the othédihe
ly created because we wanted a way to let théesult is put back onto theB (D) accumulatarA
addressing mode hardware already present in tHaultiply was added because multiplied are used
processor calculate the address of a data object §& calculating array subscripts, interpolating-val
that it could be passed to a subroutiter the ues and shifting, as well as for more conventional
index addressing modes were completed it wagrithmetic calculationsAn unsigned multiply was
realized the LEAnstruction had many more uses, selected because it can be used to form multipreci
and once again, allowed us to combine othepion multiplies.
instructions into one powerful instruction. For Another facet of good programming practice
example to add the D accumulator to thindex that we wanted to encourage was the use of-oper
register the instruction is: LEX D, Y; to add 500 ating system calls or software interrupts (SWI).
to the U register: LEAU 500, U; and to add 5 to theThe 6800 SWI has beenfedtively used by 6800
value is the S register and transfer the sum to th8upport software for breakpoints and disk operat
U register: LEAU 5, S. ing system callsThat’s nice, but unfortunately
In writing position independent read only there was only one software interrupt, and since
memory programs it is sometimes necessary tdlotorola’s software used that one the customer
reference data in a table within the same read onlfpund it difficult to shareThe 6809 provides three
memory This is generally a tedious process eversoftware interrupts, one of which Motorola prom
in computers that claim to support position inde ises never to use. It is available for user systems.
pendent code because the register that points to the One new instruction on the 6809, SYNC,
table must eventually contain an absolute addresg/lows external hardware to be synchronized to the

er

Figure 3: TheASR
(arithmetic shift
right) instruction
is used as a “test
and clear” and ST
(store) is used for
“unbusy.” These
primitive opera
tions ae used for
implementing crit
ical section exclu
sion on the 6809.

INSTRUCTIONS

00008 0100 ORG $100

00009 0100 B6 F002 5 LDA PIABC LOAD PIA CONTROL REG. - SIDE B
00010 0103 84 F7 2 ANDA #SF7 TURN OFF B-SIDE INTERRUPTS
00011 0105 B7 F002 5 STA PIABC

00012 0108 8E 3000 3 LDX #BUFFER GET POINTER TO BUFFER

00013 010B C6 80 2 LDB #128 GET SIZE OF TRANSFER

00014 010D 1A 50 3 ORCC #$50 DISABLE INTERRUPTS

00015 *WAIT FOR ANY INTERRUPT LINE TO GO LOW

00016 010F 13 2 LOOP SYNC SYNCHRONIZE WITH 1/O

00017 0110 B6 FO00 5 LDA PIAAD LOAD A-SIDE DATA; CLEAR INTERRUPT
00018 0113 A7 80 6 STA X+ STORE IN BUFFER

00019 0115 5A 2 DECB DONE?

00020 0116 26 F7 3 BNE LOOP BRANCH IS NOT

00021 0118 B6 F002 5 LDA PIABC TURN B-SIDE INTERRUPTS BACK ON
00022 011B 8A 08 2 ORA #$08

00023 011D B7 F002 5 STA PIABC

Listing 3: Hadware synchonization using SYNC, a new ingttion in the 6809 tessor that allows external ttware to be synclor

nized to the softwarby using one of the intept lines. ¥ry fast instuction sequences can beeated using SYNC when it is necegsar

to process data &m vey fast input and output devices.
software by using one of their interrupt lines. read/modify/write types of instructions to indicate
Using this instruction, very tight, fast instruction to shared memory multiprocessors that and-indi
sequences can be created when it is necessary \tisible operation is in progresss shown in figure
process data from very fast input and outpuf3 this fact can be used to turn existing instructions
devices. Listing 4 gives an example of the use ointo the LOCK and UNLOCK necessary for mutu
SYNC. It is assumed that tieside of the periph
eral interface adapter (PIA) is connected to a higtior allocation of resources.

speed device that transfers 128 bytes of data to a

al exclusion of critical sections of the program, or

And lastly never let it be said the 6809 has

memory buffer. When the device is ready to sendno SEX appeal—sign extend, that The SEX

a piece of data, it generates a fast interrupt (FIRQipstruction takes an 8 bit twecomplement value
from theA side of the peripheral interface adapterin the B accumulator and converts it to a 16 bit
Program lines 12 and 13 set up the transfer; lineswvo’s complements value in the D accumulator by
16 through 20 are the synchronization loop. Orextending the most significant bit (sign bit) of B
each pass through the loop, the program waits amto A.
the SYNC instruction until any interrupt line is Table 4 is a convenient way to look to look a
pulled low When the interrupt line goes lpthe all the instructions available on the 680Ehe
processor executed the next instruction. In order tootation first page/second page/third page op
use SYNC, all other devices tied to any of thecodes have the following meaning: first page op
interrupt line must be disabled. For this example ittodes have only one byte of op code. For example:
was assumed that the B side of the peripherdbad A immediate has an op code of hexadecimal
interface adapter also had interrupts enabled; pr@8. All second page op code are preceded by a
gram lines 9 thoughlldisable the interrupts and page op code of 10. For example, the op code for
line 21 through 23 reenable it. Line 14 is includedCMPD immediate is hexadecimal 1083 (two
to keep the interrupt by theside of the peripher bytes). Similarly third page op codes are preceded
al interface adapter from going to the interruptby a hexadecimalllA CMPU immediate is1183.
routine. Note that interrupts do not need to beSome instructions are given two mnemonics as a
enabled for SYNC to work, and in fact are nor programmer convenience. For exam@&L and
mally disabled. LSL are equivalent. Notice that the long branch op

Another improvement to the instruction setcodes LBRAand LBSR were brought onto the
was brought about by the inclusion of the hard first page for increased coddieiency.
ware signal BUSY BUSY is high during

Stacks

As mentioned previouslyhe 6809 has many
features that support stack usage. Most modern

BEFORE AFTER

ASR o—»[0000001]—][q] block structured high level languages make exten
NOT BUSY NOTBUSY _ \1eD) sive use of stacks. Even though stacks are useful in

. 0 [(05 0050 —[q] [th_e typlcal_ textbpok exampl_e of expression evalu
ation, their major usage in languages such as

BUSY BUSY eantend Pascal is to implement control structures.

LDA#L Microprocessor users already realize the advan

tage of a stack in nesting interrupts and subroutine
calls. Most high level languages also pass data on
the stack and allocate temporary local variables

BUSY NOT BUSY

from the stack.

generate d$ets to the parameters is the U is used
Listing 4 and figure 4 show an example of afor this purpose instead of the S.
high level language subroutine linkage. Before

Once U is set it is used to fetch the twguar

calling the subroutine the caller pushed andments using indexed indirect addressifige sub
addresses of two guments and the answer on theroutine body presumable does something with the
stack and then executed the jump to subroutinarguments and finishes with an answer in the D
which puts the return program counter on theregister The subroutine exit saved this value. It
stack. The subroutine then saves the old stackhen puts the return address in X and restores the
mark pointer on the stack as well as reservingrevious stack mark pointefFhe whole stack is
space on the stack for the local variables for théhen cleaned up (deleted) and return is made to the
subroutine. In this example, size locations are usedaller.

but the subroutine body during calculatiéw this Motorola 6800 users should note that the
point the stack mark pointer is set to a new valuestack pointers on the 6809 point to the last value
for this subroutineThe stack mark pointer is used pushed on the stack rather than the next free loca
because the S register may very during executiotion, as on the 680@his was done so that autein

of the subroutine body due to local subroutinescrement and autodecrement would be equivalent
etc. It is much more convenient for the compiler toto pulls and pushes. For example:ASFS is

Table 4: 6809 op code map and cycle counts. The numbers by each op code indicate the number of maclenaimgtlesaxecute
each instuction. When the number contains an | (eg: 4+1), and additional number of machine cycles equaling | ey (see
table 3). The prsence of two numbers, with the second on iarpiheses, indicate that the ingttion involves a branch. The tger
number applies if the branch is taken. The notation first page/second papp#abe has the following meaning: first page op codes
have only one bye of op code (eg: Idannmediate has an op code of hexadecimal 86)age 2 op codes ampreceded by a page
op code hexadecimal 10 (eg: the op code for CMPD immediate is hexadecimal 1083 — two bytes). Sinilpdgetop codes ar
preceded by a hexadecimdl. A CMPU immediate is183. Some ingtictions ae given two mnemonics as agrammer convenience
(egASLand LSLare equivalent). Notice that the long branch op codes LBRIALBSR wer biought onto the first page to ireased
code efficiency

Most Significant Four Bits
DIR REL ACCA|ACCB| IND | EXT | IMM | DIR | IND | EXT [IMM | DIR | IND | EXT
0000 | 0001 0010 0011 | 0100 | 0101 0110 0111 | 1000 | 1001 | 1010 | 1011 |1100 [1101 |1110 |1111
1 2 3 4 5 6 7 8 9 A B C D E F F
6 PAGE |3 BRA 4+1 2 2 6+ 7 2 4 4+ 5 2 4 4+ 5
0000 NEG |2 LEAX NEG SUBA SUBB
PAGE |3 BRN/ 4+ 2 4 4+ 5 2 4 4+ 5
0001 I E 5LBRN |LEAY CMPA CMPB
2 3 BHI/ 4+ 2 4 4+ 5 2 4 4+ 5
0010 NOP [5(6)LBHI |LEAS SBCA SBCB
6 2 3 BLS/ 4+] 2 2 6+l 7 | 46,6+, /5,7,7+|,g 5,77+.8] 2 4 4+ 5
0011 COM |SYNC|5(6) LBHS | LEAU COM susD / cmPD / CMPU ADDD
6 3BHS 5+1/by 2 2 6+l 7 2 4 4+| 5 2 4 4+ 5
0100 LSR |~ |5(6) BCC [PSHS LSR ANDA ANDB
3 BLO/ 5+1/by 2 4 4+ 5 2 4 4+ 5
a| o101 — |~ |5(6) (BCS)|PULS BITA BITB
«Q 6 5 3BNE/ |[5+1/by 2 2 6+ 7 2 4 4+ 5 2 4 4+ 5
3 | o110 ROR |LBRA [5(6) LBNE | PSHU ROR LDA LDB
L,g 6 9 3BEQ/ |5+1/by 2 2 6+ 7 4 4+ 5 4 4+ 5
§ | 0111 7 |ASR |LBSR|5(6) LBEQ|PULU ASR STA STB
b= 6 ASL 3BVC/ 2 2 6+ 7 2 4 4+ 5 2 4 4+ 5
2 1000 (LsL)y |~ |s6) LBVC| — ASL (LSL) EORA EORB
7 6 2 3BVS/ 5 2 2 6+ 7 2 4 4+ 5 2 4 4+ 5
| 1001 ROL |DAA [5(6) LBVS [RTS ROL ADCA ADCB
- 6 3 3BPL/ 3 2 2 6+ 7 2 4 4+ 5 2 4 4+ 5
1010 DEC |ORCC |5(6) LBPL | ABX DEC ORA ORB
3 BMI/ 6/15 2 4 4+ 5 2 4 4+ 5
1011 — |~ |5(6) LBMI |RTI ADDA ADDB
6 3 3 BGE/ 20 2 2 6+l 7 4,6,6+I,7/5,7,7+I,8 57,7+.8] 3 5 5+l 6
1100 INC |ANDCC |5(6) LBGE [CWAI INC CMPX / CMPY / CMPS LDD
6 2 3 BLT/ 11 2 2 6+ 7 7 7 7+l 8 5 5+ 6
1101 D [TST [SEX [5(6) LBLT |MUL TST BSR JSR STD
3 8 3BGT/ 3+ 4 |355+,6 / 4,66+.7| 355+.6 / 46,6417
1110 E [JMP |EXG [5(6) LBGT IMP LDX LDY LDU LDS
6 7 3 BLE/ 19/20/20| 2 2 6+l 7 55,6 / 6,6+,7 55+,6 / 6,6+,7
1111 CLR |TFR [5(6) LBLE |Swi/2/3 CLR STX STY STU STS

FFFF Restart
FFFC NMI
Table 5: Hexadecimal FFFA Swi -
addresses of the 6809 FFF8 IRQ
restat and interupt vee FFF6 FIRQ AL AL
tors. FFF4 Swiz T T
FFF2 SWi3
FFFO Reserved | APDRESS |
14 OF ARG 1
equivalent to PSHS&; and LDA,S+ is equivalent | ADDRESS
to PULS SThis also means the X aidregisters 12 OF ARG 2
can be used as stack pointers if the programn orrseT FROM ADDRESS
desires. For example: 8T-X is a push on a stack STACK MARK s -
defined by X.The possible ambiguity between) 10 OF ANS
where the stack pointer points on the 6800 and t RETURN
6809 may be less of a problem than it seems, sir s | . 1 <« s
of 68005 TSX becomes the 68G9TFR S, X
without adding 1 and’ XS becomes dFR X, S | OLbSTack
without subtracting 1 — think about ithe only 6 MARK (U')
danger is in programs that used the stack pointer
an index registerin these programs the stack >l -
pointer may point on location away from where i 4 |
did previously 3 LOCAL
Interrupts 2 | VARIBLES
1
The 6809 has three fully vectored hardwar o | | <——u
interrupts.The nonmaskable interrupt (NMI) and
maskable interrupt (IRQ) are the same as tt L A
68005 NMI and IRQThe new interrupt is the fast T T
maskable interrupt, or FIRQ, that stacks the- prt --——S

gram counter and condition code register only ¢
interrupt. Table 5 gives the addresses of the inte
rupt vectors for the 6809.

A new signal (IACK) has been added that is
available anytime an interrupt vector is fetched.

This signal together with address bus linkd
'S Sig 9 w us i Part 2, entitled “instruction Set Dead-Ends,

throughA3 can be used to implement in interrupt . .))
g P P Old Trails andApologies,” will be a question and

scheme in which each device supplies its own i . bout the desi hil h
interrupt vectar answer discussion about the design philosophy

The interrupt control and prioritization logic that went into the 6808.
of the 6809 have been defined very carefully — not

"redundant or indeterminate conditions can exist
when several interrupts occur simultaneoushe
details of the interrupt structure are precisely
defined in Motorola documentation for the 6809.

00006 0500 34 40 6 SUBR PSHS U SAVE OLD STACK MARKER
00007 0502 32 66 5 LEAS 6,S RESERVE LOCAL STORAGE
00008 0504 1F 43 6 TFR S,U GET NEW STACK MARKER
00009 0506 EC D8 OE 10 LDD [14,U] GET ARGUMENT 1

00010 0509 AE DE 0OC 10 LDX [12,U] GET ARGUMENT 2

00011 *

00012 * SUBROUTINE BODY

00013 *

00014 050C ED D3 0A 10 STD [10,U] SAVE ANSWER

00015 O50F AE 48 6 LDX 8,U GET RETURN ADDRESS
00016 0511 EE 46 6 LDU 6,U RESTORE U’

00017 0513 32 E8 106 LEAS 16,S POP EVERYTHING OFF STACK
00018 0516 6E 84 3 JMP X RETURN

Listing 4: Use of stacks on the 680®gessarln this typical high level language sohitine example, Wind S'are the mark stack point

er and the hatware stack pointerespectivelyjust prior to the call. U and S arthe sameegisters during execution of the sabtine

body Befoe calling the sulwutine the caller pushes the adds of two gyuments and the answer on the stack and then executes the jump
to suboutine which puts thesturn pogram counter on the stack. The sufiine then saves the old stack mark pointer on the stack as
well as esewing space on the stack for the local variables for theautbre (see figuw 4).

Copyright 1978 by
Terry Ritter and Joel
Boney

Photo 1: Layout.
Layout designer dny
Riccio adds alinein a
large layout cell.
Their various coloed
lines epresent differ
ent types of conduc
tors (metal, polysik
con, N_, etc) which
will be formed on the
integrated cicuit.
(The yellow dotsep
resent poblems to be
corrected.)

A Microprocessor for the Revolutiothe 6809 present illumination and defensél/hile we are
aware of a number of improvements which might
have been included, the whole point is to sell a
reasonably sized (and thus reasonably priced) inte
grated circuitWe hope that architectural errors of
commission, as they are found, will be seen in
light of the complete desighVe are not aware of
any such errors at this time.

Point 1:

Part 2: Instruction Set Dead Ends, Qldhils and
Apologies

Terry Ritter and Joel Boney
Motorola, Inc.

3501 Ed Bluestein Blvd
Austin, TX 78721

In part 1 of this series (see January 1979 = 1 repjaced instructions (PSHA/PULA,
BYTE, page 14) we discussed the instruction Seii’AB/TBA, INX/DEX) all take more cycles and

and other details.of the Motorola 5809 Processofy tes than beforaVhy did you do such a thing?
Part 2 is a question and answer discussion of the

design philosophy that went into the 6809.
Any change from old to new inevitably
brings criticism from someone. Indeed, any failure Consider: the question is not just

to change to include someos@et ideas brings its PSHA/PULA, but rather PSHA/PULA/PSHB/
own criticisms.We have not been isolated from PULB/PSHX/PULX/PSHY/PUY/PSHU/PULU,
;om_etimes severe criticism, nor from its political etc as well as simular op codes for the other stack.
implications. - Ther are only 256 1 byte op codd§the PUSHSs
However a number of our decisions have and PULLs are made 1 byte, others must be made
been reasonably challenged, and here we hope ?byte, andhesewill take more cycles and bytes

Answer 1:

than beforeAnd the macrosequenced PUSH orconsider this: microprocessors are products of a
PULL instructions arenote efficientthan byte op mass production technology - processor cost is ho
codes when more than one register is involved. longer a system limiting factodt is generally
Similarly, as more registers are added, thenappropriate to use a single $20 processor te con
number of possible transfer paths become coembirol $10,000 worth of memory; the single proces
natorially lager Do you really want to give up sor could use only a fraction of the bandwidth
that number of 1 byte op codes? resource available in that much memory (here,
As for INX/DEX, we find that these we fre bandwidth means the maximum possible rate of
guently used in 6800 code because they were mohange of storage state under processor corrol).
convenient than any other alternativide now far more reasonable approach is to place the same
offer autoincrementing and autodecrementingotal store on ten processors and give yourself the
indexing as a viable (ie: shorten cycles and possibility of major throughput improvement.
bytes) alternativeWe also allow arbitrary addi Naturally you'll have to learn how to control all

tions to X,Y, U, and S. this powey but if you're an innovative systems
designerthat’s exactly your job.
Point 2: There are two principal divisions of multi

processor systems, depending on the degree of
| don't see any facility for expanding the 64K coupling between the processors. Closely coupled

address space. processors usually communicate through some
common memory; loosely coupled processors
Answer 2: communicate through input/output ports, serial

lines, or other “slow” communications channels.
True. Memory expansion is possible, butLoosely coupled systems can usually be under

Photo 2: Beadboad
design. After patti-
tioning the logic, the
mos (metal oxide
semiconductor) dia
gram is translated to
TTL. The equired ten
boads ae then
designed and built.
Meanwhile, Bill
Keshlear validates
the logic changes on
the master copy of the
logic diagrams, since
they will imply
changes on the
boards.

stood as networks of quasi-independent procesnultiprocessor system. Now for $500 and a little
sors. work, you've got the hardware. dttime to start

Now, let's consider a concept that we call learning to control these systems. I§ itiard one
“smart memory One reason for wanting more way, do it anotherThe power is there for use.
address space on a processor is to randomly access
a lage store of on line data. Most of your proeess Point 3:
ing is spent cataloging data, sorting data, moving,
searching and updating data. If you want to handle You still didnt include block operations, did
more data, you put on more memory and the sysyou?
tem gets bigger and slower

But suppose you put a processor on eachrea Answer 3:
sonable piece of memory (16K or whatever).
Make the program for that processor really dumb No - and we could have. But have you looked
- make it just take orders for data. Its whole-pur at how often block instructions could really be
pose is to handle data for the command processoused in your programs®nd how much code is
it stores, moved, searches and updates. But fareeded to duplicate them yoursekitd how often
now, it does only memory operations. Now hook athey dont really do exactly what you wantedfd
lot of these “smart memory” modules onto yourhow fast they would run compared to your -pro
system (the IEEE 488 bus should work), and-comgrammed version? Please do lod¥e think the
mand a searchll the modules search in parallel, autoincrement and autodecrement index address
and if you grow and put more modules, you-haning is a far more general solution.
dle more data just as fast as ever!

The second major approach to multipreces Point 4:
sor systems is what we call shared bus muklipro
cessing. Multiple microprocessors are closely-cou No bit manipulation, either

pled through a common bus and a proper subset of
their memory address space. It is crucial to see the Answer 4:
common bus as the bandwidth limiting resource;
each processor should use its own local memory Are you really willing to pay 10 to 20 percent
and stay dfthe common bus until it needs accessmore just for bit manipulation? Program coded bit
to the common store. manipulation takes a little longdyut is more gen
Multiple requests for common memory eral, and probably is located is a very lightly used
access might be issued by various processors pbrtion of your program, thus having very little
exactly the same moment. It is there fore neceseffect on your total throughput or program size.
sary to arbitrate among them, switching exactly
one processor onto the common bus, and allowing Point 5:
it to proceed with its memory access while the
other are heldot-READY. Why no undefined op code trap?
It should be clear that the same concept (a
common bus arbitration and switching node) can Answer 5:
be hierarchically extended. Furthtre addressing
capability can be expanded and possibly remapped Because the machine is a random logic
at each node to allow fast random access to hugmplementationThe unused op codes are used as
amounts of on line mass storage. Such obviou%lon’t cares’in derivation of internal logic equa
extension is left as an exercise for the serious stuions, thus allowing reduced logic and integrated
dent. Perhaps you are thinking that you baidd circuit size. Failure to include the dorcares in
it, but nobody can write the software to control it.the logic equations would result is adar and
We are not insensitive to the problem, just urRhapmore expensive circuit.
py with the attitudeWe worked hard to give you
the tool; all you have to do is learn to use it. Every Point 6:
new technology is like this - our scientists still
don't know how to fully control the atom, but that Some other processors allow both indexed
doesnt stop atomic fusion from being one of the before indirect (indexed indirect) operation and
most attractive “games” around since the p#syof indirect before indexed (indirect indexed) opera
are huge. tion, but yours does ndtvhy?
Nobody has ahanceto develop complex
multiprocessor software until she or he has a real Answer 6:

First of all, we wanted our addressing modes
to operate on all of our memory instructions.
Secondly indirect indexed addressing has much
lower utility than our indexed indirect form.
Thirdly, we didnt strip down our instruction set,
so real features were getting a little precious.
Everything has to fit on one chip, remember

We had considered the possibility of includ
ing a sort of chained addressing, in which the
memory data would be interpreted as a new
indexed postbyte capable of specifying a complete
new addressing operatiofhis sort of thing could
continue to indefinite levels, of couse. But such an
instruction would then be executing data, which is
usually a bad idea (self-modifying code) and is
also the reason why we included no EXEcute
instruction. (NaturallyEXEcute can be emulated
if you really need it. but since EXEcute is usually
used to make up for the lack of powerful address
ing modes, it will not likely be missed from the
6809) Furthermore, this executed data would
almost certainly be discontiguous in the memory
space, making even the analysis of the simple casq
(read only memory) programs extremelyfidiflt.
Placing such an uncontrollable gimmick in a
processor design would be like placing a glittering
knife in front of a babyand would be similarly
irresponsible.

Point 7:
You have a MULtiplybut no DINide.
Answer 7:

True enough. Multiply operations are
required in high level language subscript array cal
culations, but how often do you really need
divide? Do you really want to pay for something
you will rarely use and can do easily with a{pro
gram.Additionally, the unsigned multiply is easily
capable of extension into multiple precision arith
metic. (Try that with a singed multiply!) Divide
does not decompose as nicdlis combined with ghers This basic dichotomy of data and pointers
the absence of similar instructions in the maching, 4atg exists in practice, and is therefore rarely a
(divide needs 24 bits of parameters, both in angyqplem with out implementation. But the EXG

Photo 3: \sual inspection. Some of theogs pocessing awors or poblems
that occur with pobing equipment can be detected visuadigre, lead po-
duction operator May Celedon checks a 6802 wafer

out) was enough to leave it out. instruction allows convenient manipulation
) between these groups in any unusual circum
Point 8: stances.
Your registers are all special purpose. Point 9
Answer 8: Why did you include all those new address

_ _ ing modes? I'll never use them.
Well, in a way as we have 16 bits of accu

mulator and 64 bits of useable pointers plus some Apswer 9:

The notation (x n
means ther ar n
ways to perform
that paticular
operation. (x 1.5)
means thex are
two ways to per
form that opera
tion but not ever
addressing mode
is allowed...RGAQ

the user stack pointer was to facilitate the creation

We expect that yowill use the new address of a data stack in memory that is separate from the
ing modes, and quite heavilyhere are a lot of program stackThis avoids one of the serious
different indexed options. But notice that thgéar problems of using a second generation processor
number of diferent modes is a result of including in a modular programming environment - that of
all permutations of a few basic ideas. returning parameters to a calling routiiée want

Fundamentally you can index from any to pass parameters in a position independent man
pointer register (x 4), use indexed indirect accesser, of course, but the return from subroutine
(x 2), and have accumulatorfeéts (x 3) or con (RTS) instruction uses the top element of the stack
stant ofsets of up to 16 bits in three versions (x 3)as a return address, and this address is placed on
(see box at lower right). But if you work in assem the stackbefore the subroutine is entered. On the
bly language, you dohheed to figure addressing 6800 there will be a lot of stack rearrangement
so the diferent constant ¢dets modes may be going on to get around this probleffihe user
ignored.And if you select an addressing modestack pointer was created as a new stack -unen
which is not available, the assembler will politely cumbered with return addresses (or interrupt state
inform you of your indiscretion. information) to allow data to be passed between

Alternately you can specify autoincrement routines of diferent levels in a reasonable manner
or autodecrement operations (x 2), by either one oAnd since the new stack works exactly like the
two (x 2), which may be indirected (x 1.5) (exceptold, there is a relatively small silicon cost
there is no indexed autoincrement and autodecrénvolved.
ment by one indirect - think about it). Finalbon We do suspect, howevéhat many program
stant ofsets are allowed from the program ceunt mers will elect to accept the overhead involved
er (x 3) and these may also be indirected (x 2). with passing parameters on the hardware stack

There are a lot of modes, no doubt about it(note that the overhead problem is greatly reduced
But relatively few new ideas are required to gainwith the 6809).These programmers will be con
full control over those powerful new features. cerned with the access of parameters placed on the
stack by higher level routines. Notice that, as more
elements are added to the stack, theame
parametersare referred to by varying faets with

I would have liked an operating system callrespect to the stack pointer itself: this is bad, since
instruction which carried a parameter to the eperit becomes dffcult to analyze exactly which value
ating system. is being accessed by any given subroutirtaus
many programmers will use the U register as a
stack markpointer fixed at some previous loca
tion of the stack pointeAll lower level modules

So would we. Unfortunatelythe location |1 will then be able to refer to the same data by-iden
want to use for parameters may not (and probabiltical offsets from the U register
will not) be what you want to use. It is desirable to
allow both constant and variable parameters to the
operating system\What you do get is two more
trap-like software interrupt (SWI) instructions; the Why do the 6809 stack pointers point to the
instructions SWI2 and SWI3 do not mask interruptlast item on the stack rather than the next free loca
as SWI does, thus allowing use even in interruption, as on the 6800?
derived programs. Parameters may be passed in
any registeror on the stack, or as the next byte of
in line code.All of this will require some over
head, but the scheme is for more general than a
trap that carries a parameter

Point 10:

Answer 10:

Point 12:

Answer 12:

This architectural change was virtually man
dated by the following the chain of logic that
resulted from extending the 6800 into double byte,
autoincrement and stack indexable operations.
First, let us assume the above extensions
Tell me again about the stack pointers: whywith a 6800 style stack: the stack pointer thus
two stack pointers? points one byte below (lower in memory) the last
byte deposited. Naturally the other pointers should
work similarly (allowing their use as additional
stacks, and requiring no new understandimg)s
Good point.The original reason for adding means that the autoindex operations have to be

Point 11.:

Answer 1:

preincrement and postdecrement. N®uppose Photo 4: Editing the

we have a stack or table of double byte data; the Why not have more registers? layout. Drafting man

data pointer must be set up one byte below the data ager W\yne Busfield
to prepare for autoincrement (or pull) operations. Answer 13: and senior layout
To access the first value the expression LDD ,+S designer Rick Secrist

must be used, while succeeding operations appear Good designs are often the result of en¢make changes indi
to need LDD ,++SThis result is not great for neering compromise3o meet product size goalscated by enginéering
loops.Alternately the stack pointer could be made only so many things can go on an integrated canalysis. This itera
to pointtwo bytes above the stack for double bytecuit. You can have registers, or features, or soillV€ POCESS Imppves
data only This would require dferent ofsets combination.The 6809 does have approximate/Performance and pr
from the stack pointer (to access,,stye top of 20 addressing modes. duction yield, and
the stack) depending upon the size of the data Registers for the sake of registers amountthus lowers cost.
being accessed. Dérent ofsets would also be little more than separate, very expensive a
required, depending on whether the data was jusestricted memory areashe register resource i<
being used, or being pulled from the stathis is always insufcient to hold temporary results of ¢
workable, but not great conceptualyother pos large program, and must be reallocated in varic
sibility is to form the dective address from the routines.This allocation process is an error pror
value of the pointer after only tHist increment. programming overhead\ separate register set for
This “kluge” solution would be hard to implement interrupt processing is suitable only for one inter
anyway so we changed the stacks. rupt level and, otherwise, is mostly wasted.

This change of reasoning is an example of A few registers fully supported by features
the diference between architectural design anchre better than just having a lot of registers.
just slapping instructions together

Point 14:
Point 13:

Why no instructions to load or store the to pass up (in terms of substantial benefits for-min

direct page register? imum cost). The benefits include an operation
length reduction of 33 percent for instructions
Answer 14: using absolute address and a concurrent through

put increase of 20 percent. It now becomes possi

The direct page register is one of those-posble to optimize code, perhaps allowing an ever
sible dangerous features which was just too goodized program to fit within discrete read only
memory boundarie§ he direct page register may
also be used in a multitasking environment to
allow single copies of routines to operate with
multiple independent processes. Howepeovid
ing a separate stack area and having each routine
store local values on the stack may be a better
solution.

Because a number of 6809 instructions (eg:
INC/DEC, ASL/ASR/ROL/ROR/LSL, TST/
COMI/CLR/NEG) operate directly on memotiie
direct page area may be used very much like a
processor with 256 8 bit registers to hold counters,
flags and serial information. So, perhaps most
importantly the direct page register relaxes the
system requirement for programmable memory at
a particular location (page 0) to use direct address
ing; the cost is a single 8 bit register and no new
instructions.

The programmer is cautioned to tread eare
fully when using direct page registéil forms of
absolute addressing for temporary values and
parameters present problems in the development
of large programsAttempts to enlage the number
of direct locations by manipulating the direct page
register may be trickyAnd manipulation of the
register by subroutines may lead to errors which
switch the calling routines direct page in remote
(ie: subroutine) unobvious cod&herefore, this
register is made deliberately fitilt to play with.
Typically, it should be set up once and left there.
To load the direct page register you can proceed as
follows: EXGA,DP; LDA #NEWDP; EXGA,DP.
Alternately the direct page register is also avalil
able in PUSH/PULLinstructions, but misuse is
discouraged through lack of LDD#hd STDP

Point 15:

You preach consistencyet you give us
LEA, an instruction with dferent condition codes
for different registersiVhy is this so?

Answer 15:

Photo 5: First silicon engineering analysis. Logic anctait design engi The Z flag is undécted by LEAS or LEAU
neer Bob Thompson tracks down a weak node in the first batch of 68%t conditionally set by LEAX or LEX depend

chips. The 6801 die is packaged, but not sealed, so that internal nodes may . A
T A ! INg on the value loaded into the registéris pro

be pobed while in operation.i®ving though a micoscope, a mbe can be vides 6800 compatibility with INX/DEX (imple

placed at critical points equivalent to the layout plot. The chip itselins r P y P

: . : . ented as LEAX 1,S or LEAX -1,X) and
ning a modifies EXORcisor system, and the scope actually displayed an . ’ ’
internal signal with excessively slow rise time. INS/DES (implemented as LEAS 1,S and LEAS -

1,S), respectively

Now clearly if most 6800 programs are
going to run on the 6809, the use of INX/DEX for
event counts must be recognized. But in 6809 pro
grams, releasing local stack area before executing
RTS will b a very frequent action (LEAS -9,S; ABX
RTS) “cleaning up the stackYou do want to ADCA, ADCB
return a previous condition code value undamagedANDA, ANDB

by the LEAS, so you get two types of LEA. ANDCC
ASLA, ASLB, ASL

ASRA, ASRB, ASR
BITA, BITB

CLRA, CLRB, CLR
What about position independent code? CMPA, CMPB

Doesnt the 6800 allow it, too? COMA, COMB, COM
DAA

DECA, DECB, DEC
EORA, EORB

o]) EXG R1, R2
Position independent code is one cruciat fac |Nca, INCB, INC

tor in achieving low cost software. (Position inde LDA, LDB

pendent temporary storage and input/output mustLSLA, LSLB, LSL

also be available.) Only read only memories which LSRA, LSRB, LSR

may'be”usgdb:n grblrt]rary teat sys:ems are e;:o NEGA. NEGB, NEG

nomically viable in the context of mass produc A org

tion. And only these read only memories can result orcc

in low cost firm_/vare for us all. o PSHS (register)g
The 6800 is capable of position independent _

code execution in relatively small programs. PSHY (registen)§

Somewhere around a 4 K byte limit the program PULS (register)g

can no longer suppor_t all cqntrol-transfer pa_ths PULU (register)g

using bran.ch branqh mstrucﬂogs (eveP aII.owmg ROLA, ROLB, ROL

the use of intermediate branch *islands”). Either a gora, RORB, ROR

long branch subroutine must be used (at a cost oisgcA, SBCB

100+ cycles for each LBSR) or the program must STA, STB

Mnemonic

Point 16:

Answer 16:

Table 1: 6809 instruction set.

8 BIT OPERATIONS

Description

Add B register to X register unsigned.
Add memory to accumulator with cary.
And memory with accumulator.

And memory with condition code register.
Arithmetic shift left accumulator or memory.
Arithmetic shift right accumulator or memory.
Bit test memory with accumulator.

Clear accumulator or memory.

Compare memory with accumulator.
Complement accumulator or memory.
Decimal adjust A accumulator.

Decrement accumulator or memory.
Exclusive or memory with accumulator.
Exchange R1 with R2.

Increment accumulator or memory.

Load accumulator from memory.

Logical shift left accumulator or memory.
Logical shift right accumulator or memory.
Unsigned multiply (8 bit by 8 bit = 16 bits).
Negate accumulator or memory.

Or memory with accumulator.

Or immediate with condition code register.

Push register(s) on hardware stack.
Push register(s) on user stack.
Pull register(s) on hardware stack.

Pull register(s) on user stack.

Rotate accumulator or memory left.

Rotate accumulator or memory right.

Subtract memory from accumulator with barrow.
Store accumulator to memory.

Subtract memory from accumulator.

Test accumulator or memory.

Transfer register R1 to register R2.

16 BIT OPERATIONS

be made position dependent. SUBA, SUBB
TSTA, TSTB, TST
Point 17: TFRR1, R2
What about dynamic memory?
Mnemonic
Answer 17:
ADD
There are two problems associated with SUBD

dynamic memories: address bus multiplexing and g

refresh. Address bus multiplexing is the most cmpp

severe problem but requires multiplexing 6+6 LDX, LDY, LDS, LDU
address lines (for 4 K memories) or 7 + 7 lines (for STX, STY, STS, STU

16K memories); these values are particularly CMPX,CMPY, CMPU, CMPS
LEAX, LEAY, LEAS, LEAU

inconvenient for 8 bit processors (which usually

ltiplex address/dataJhus, we have yet to see SEX
muftip A ! y TFR register, register
a processor address this problem. EXG register, register

Micropr(_)cessors that automatically refresh pgug (register)8

memory during most unused bus cycles waste)
power on unnecessary refreshes and unnecessaril”SHY (registen§
increase bus activityfhe 6809 can easily refresh PULS (register)g
dynamic memory in software (a timer cause mnter pj
rupt execution of FCB $1063 times, thefIR or
can support hardware refresh (a direct memory

(register)g

Description

Add to D accumulator.
Subtract from D accumulator.
Load D accumulator.

Store D accumulator.
Compare D accumulator.
Load pointer register.

Store pointer register.
Compare pointer register.
Load effective address into pointer register.
Sign extend.

Transfer register to register.
Exchange register to register.

Push register(s) on hardware stack.
Push register(s) on user stack.
Pull register(s) on hardware stack.

Pull register(s) on user stack.

Table 1: continued:

Mnemonic
O,R
[0,R]

Note: R=X, Y, U, or S; P =PC, X, Y, U, or S. Brackets indicate indirection. D

INDEXED ADDRESSING MODES

Description

Indexed with zero offset

Indexed with zero offset indirect
Autoincrement by 1.

Autoincrement by 2

Autoincrement by 2 indirect

Autodecrement by 1

Autodecrement by 2

Autodecrement by 2 indirect

Indexed with signed n as offset (n=5, 8, or 16

Indexed with signed n as offset indirect
Indexed with accumulator A as offset
Indexed with accumulator A as offset indirect
Indexed with accumulator B as offset
Indexed with accumulator B as offset indirect
Indexed with accumulator D as offset
Indexed with accumulator D as offset indirect

means use AB accumulator pair.

Mnemonic

BCC, LBCC
BCS, LBCS
BEQ, LBEQ
BGE, LBGE
BGT, LBGT
BHI, LBHI

BHS, LBHS
BLE, LBLE
BLO, LBLO
BLS, LBLS
BLT, LBLT

BMI, LBMI

BNE, LBNE
BPL, BPL

BRA, LBRA
BRN, LBRN
BSR, LBSR
BVC, LBVC
BVS, LBVS

Mnemonic

CWAI

interrupt.

NOP

JMP

JSR

RTI

RTS

SEX

SWI, SWI2 SWI3
SYNC

6809 RELATIVE SHORT AND LONG BRANCHES.

Description

Branch if carry clear.

Branch if carry clear.

Branch if equal.

Branch if greater than or equal (signed).
Branch if greater (signed).

Branch if higher (unsigned).

Branch if higher or same (unsigned).
Branch if less than or equal (signed).
Branch if lower (unsigned).

Branch if lower or same (unsigned).
Branch if less than (signed).

Branch if minus.

Branch if not equal.

Branch if plus.

Branch always.

Branch never.

Branch to subroutine.

Branch if overflow clear.

Branch if overflow set.

6809 MISCELLANEOUS INSTRUCTIONS

Description
clear condition code register bits and wait for

No operation/

Jump.

Jump to subroutine.

Return from interrupt.

Return from subroutine.

Sign extend B register into A register.
Software interrupt/

Syncrhonize with interrupt line.

access [DMA] sequence, or isolatec board -auto
matic refresh) at minimal cost.

Point 18:
What about price?
Answer 18:

The 6809 will be more expensive than in-
production second generation 8 bit designs. For
one thing, it is bigger and also new - both reasons
imply reduced yield compared to older pa#s.
moderately higher price should not be a problem,
since the processor cost is a very minor part of the
price of a whole systenThe total 6809 system
should be nearly as powerful and much less expen
sive than 16 bit designghe cost of not using
6809, on the other hand, will likely be severe in
terms of increased programming error rategdar
read only memories and decreased throughput.

In “Part 3: Final Thoughts” (March 1979
BYTE), we will conclude this series with a dis
cussion of clock speed, timing, condition codes
and software deign philosopky

