March 1998

'4F545 Octal Bidirectional Transceiver with 3-STATE Outputs

FAIRCHILD

74F545 Octal Bidirectional Transceiver with 3-STATE Outputs

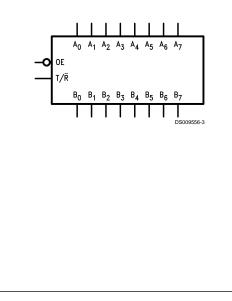
General Description

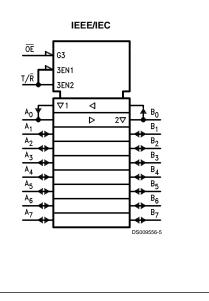
The 'F545 is an 8-bit, 3-STATE, high-speed transceiver. It provides bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with 24 mA (20 mA Mil) bus drive capability on the A ports and 64 mA (48 mA Mil) bus drive capability on the B ports.

One input, Transmit/Receive (T/\overline{R}) determines the direction of logic signals through the bidirectional transceiver. Transmit enables data from A ports to B ports; Receive enables data from B ports to A ports. The Output Enable input disables both A and B ports by placing them in a 3-STATE condition.

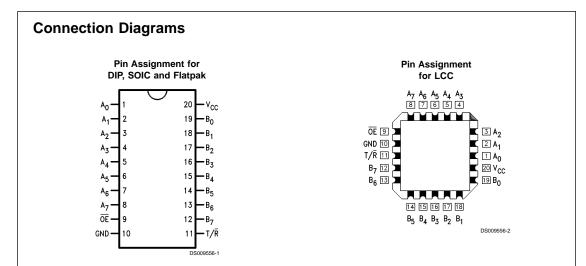
Features

- Higher drive than 8304
- 8-bit bidirectional data flow reduces system package count
- 3-STATE inputs/outputs for interfacing with bus-oriented systems
- 24 mA (20 mA Mil) and 64 mA (48 mA Mil) bus drive capability on A and B ports, respectively
- Transmit/Receive and Output Enable simplify control logic
- Guaranteed 4000V minimum ESD protection
- Pin for Pin compatible with Intel 8286


Ordering Code:


Commercial	Military	Package	Package Description
		Number	
74F545PC		N20A	20-Lead (0.300" Wide) Molded Dual-In-Line
	54F545DM (Note 2)	J20A	20-Lead Ceramic Dual-In-Line
74F545SC (Note 1)		M20B	20-Lead (0.300" Wide) Molded Small Outline, JEDEC
74F545SJ (Note 1)		M20D	20-Lead (0.300" Wide) Molded Small Outline, EIAJ
	54F545FM (Note 2)	W20A	20-Lead Cerpack
	54F545LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.


Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

© 1998 Fairchild Semiconductor Corporation DS009556

Truth Table

B Data to Bus A
B Data to Bus A
D Dala lo Dus A
A Data to Bus B
ηΖ

L = LOW Voltage Level X = Immaterial Z = High Impedance

Unit Loading/Fan Out

			54F/74F
Pin Names	Description	U.L.	Input I _{IH} /I _{IL}
		HIGH/LOW	Output I _{OH} /I _{OL}
ŌĒ	Output Enable Input (Active LOW)	1.0/2.0	20 µA/–1.2 mA
T/R	Transmit/Receive Input	1.0/2.0	20 µA/–1.2 mA
A ₀ -A ₇	Side A 3-STATE Inputs or	3.5/1.083	70 μA/–650 μA
	3-STATE Outputs	150/40 (33.3)	–3 mA/24 mA (20 mA)
B ₀ -B ₇	Side B 3-STATE Inputs or	3.5/1.083	70 μA/–650 μA
	3-STATE Outputs	600/106.6 (80)	-12 mA/64 mA (48 mA)

Absolute Maximum Ratings (Note 3)

Storago Tomporaturo	-65°C to +150°C
Storage Temperature	
Ambient Temperature under Bias	–55°C to +125°C
Junction Temperature under Bias	–55°C to +175°C
Plastic	–55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to +7.0V
Input Voltage (Note 4)	-0.5V to +7.0V
Input Current (Note 4)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	–0.5V to $V_{\rm CC}$
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
Input Voltage (Note 4) Input Current (Note 4) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output	-0.5V to +7.0V -30 mA to +5.0 mA -0.5V to V _{CC} -0.5V to V _{CC}

DC Electrical Characteristics

ESD Last Passing Voltage (Min)

Recommended Operating Conditions

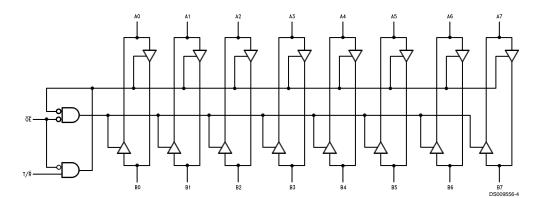
Free Air Ambient Temperature	
Military	–55°C to +125°C
Commercial	0°C to +70°C
Supply Voltage	
Military	+4.5V to +5.5V
Commercial	+4.5V to +5.5V
Note 3: Absolute maximum ratings are values be damaged or have its useful life impaired. Fur	

4000V

conditions is not implied. Note 4: Either voltage limit or current limit is sufficient to protect inputs.

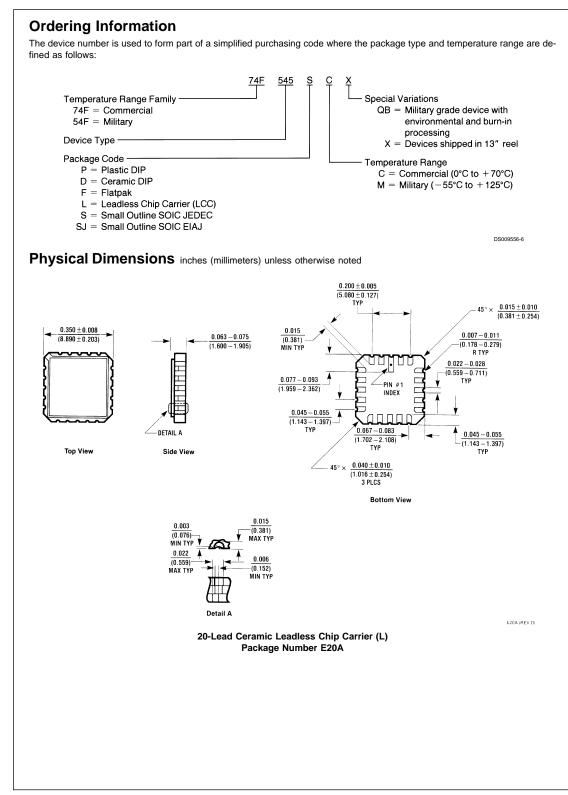
Here in Ender tonage with or carroin with to canoloni to prote

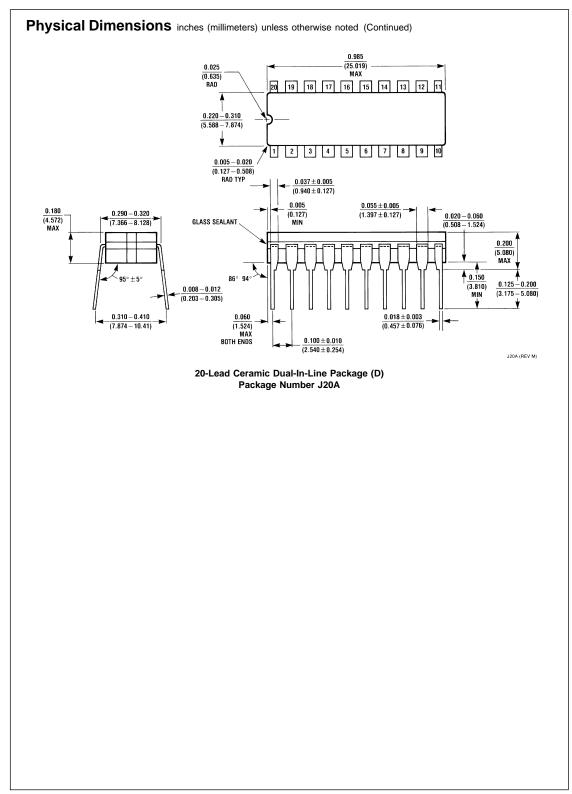
Symbol	Parame	ter		54F/74F		Units	V _{cc}	Conditions
			Min	Тур	Max			
VIH	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA} (\overline{OE}, \text{T/R})$
V _{OH}	Output HIGH	54F 10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA} (A_n)$
	Voltage	54F 10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA} (A_n)$
		54F 10% V _{CC}	2.0					$I_{OH} = -12 \text{ mA} (B_n)$
		74F 10% V _{CC}	2.5			V	Min	$I_{OH} = -1 \text{ mA} (A_n)$
		74F 10% V _{CC}	2.4					$I_{OH} = -3 \text{ mA} (A_n)$
		74F 10% V _{CC}	2.0					I _{OH} = -15 mA (B _n)
		74F 5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA} (A_n)$
		74F 5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA} (A_n)$
V _{OL}	Output LOW	54F 10% V _{CC}			0.5			$I_{OL} = 20 \text{ mA} (A_n)$
	Voltage	54F 10% V _{CC}			0.55	V	Min	I _{OL} = 48 mA (B _n)
		74F 10% V _{CC}			0.5			$I_{OL} = 24 \text{ mA} (A_n)$
		74F 10% V _{CC}			0.55			I _{OL} = 64 mA (B _n)
I _{IH}	Input HIGH	54F			20.0	μA	Max	$V_{IN} = 2.7V \ (\overline{OE}, \ T/\overline{R})$
	Current	74F			5.0			
I _{BVI}	Input HIGH Current	54F			100	μA	Max	$V_{IN} = 7.0V \ (\overline{OE}, \ T/\overline{R})$
	Breakdown Test	74F			7.0			
I _{BVIT}	Input HIGH Current	54F			1.0	mA	Max	V _{IN} = 5.5V (A _n , B _n)
	Breakdown (I/O)	74F			0.5			
ICEX	Output HIGH	54F			250	μA	Max	$V_{OUT} = V_{CC}$
	Leakage Current	74F			50			
VID	Input Leakage	74F	4.75			V	0.0	I _{ID} = 1.9 μA
	Test							All Other Pins Grounded
I _{OD}	Output Leakage	74F			3.75	μA	0.0	V _{IOD} = 150 mV
	Circuit Current							All Other Pins Grounded
I _{IL}	Input LOW Current				-1.2	mA	Max	$V_{IN} = 0.5V \ (\overline{OE}, \ T/\overline{R})$
I _{IH} + I _{OZH}	Output Leakage Curre	ent			70	μA	Max	$V_{OUT} = 2.7V (A_n, B_n)$
I _{IL} + I _{OZL}	Output Leakage Curre	ent			-650	μA	Max	$V_{OUT} = 0.5V (A_n, B_n)$
I _{os}	Output Short-Circuit C	Current	-60		-150	mA	Max	$V_{OUT} = 0V (A_n)$
			-100		-225			$V_{OUT} = 0V (B_n)$
I _{zz}	Bus Drainage Test				500	μA	0.0V	V _{OUT} = 5.25V

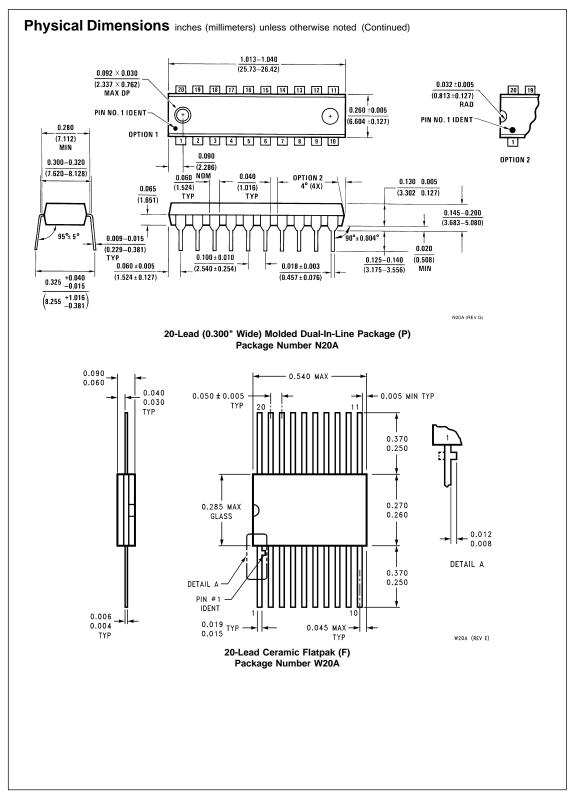

	DC Electrical Characteristics	(Continued)
--	-------------------------------	-------------

Symbol	Parameter		54F/74F		Units	V _{cc}	Conditions
		Min	Тур	Max			
ссн	Power Supply Current		70	90	mA	Max	V _o = HIGH
I _{CCL}	Power Supply Current		95	120	mA	Max	V _O = LOW
I _{ccz}	Power Supply Current		85	110	mA	Max	V _o = HIGH Z


AC Electrical Characteristics


Symbol	Parameter	· ·	74F T _A = +25°C V _{CC} = +5.0°	v	T _A , V _C	4F _{:c} = Mil 50 pF	T _A , V _{CC}	4F ; = Com 50 pF	Units
		Min	С _L = 50 рF Тур	Max	Min	Мах	Min	Max	-
t _{PLH}	Propagation Delay	2.5	4.2	6.0	2.0	7.5	2.5	7.0	ns
t _{PHL}	A_n to B_n or B_n to A_n	2.5	4.6	6.0	2.0	7.5	2.5	7.0	
t _{PZH}	Output Enable Time	3.0	5.3	7.0	2.5	9.0	3.0	8.0	
t _{PZL}		3.5	6.0	8.0	3.0	10.0	3.5	9.0	ns
t _{PHZ}	Output Disable Time	3.0	5.0	6.5	2.5	9.0	3.0	7.5	
t _{PLZ}		2.0	5.0	6.5	2.0	10.0	2.0	7.5	


Logic Diagram


Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconductor
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
w.fairchildsemi.com		Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.